Clustering with Few Disks to Minimize the Sum of Radii

Authors Mikkel Abrahamsen, Sarita de Berg, Lucas Meijer, André Nusser, Leonidas Theocharous



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.2.pdf
  • Filesize: 1 MB
  • 15 pages

Document Identifiers

Author Details

Mikkel Abrahamsen
  • University of Copenhagen, Denmark
Sarita de Berg
  • Utrecht University, The Netherlands
Lucas Meijer
  • Utrecht University, The Netherlands
André Nusser
  • University of Copenhagen, Denmark
Leonidas Theocharous
  • Eindhoven University of Technology, The Netherlands

Acknowledgements

This work was initiated at the Workshop on New Directions in Geometric Algorithms, May 14-19 2023, Utrecht, The Netherlands.

Cite AsGet BibTex

Mikkel Abrahamsen, Sarita de Berg, Lucas Meijer, André Nusser, and Leonidas Theocharous. Clustering with Few Disks to Minimize the Sum of Radii. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 2:1-2:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.2

Abstract

Given a set of n points in the Euclidean plane, the k-MinSumRadius problem asks to cover this point set using k disks with the objective of minimizing the sum of the radii of the disks. After a long line of research on related problems, it was finally discovered that this problem admits a polynomial time algorithm [GKKPV '12]; however, the running time of this algorithm is 𝒪(n^881), and its relevance is thereby mostly of theoretical nature. A practically and structurally interesting special case of the k-MinSumRadius problem is that of small k. For the 2-MinSumRadius problem, a near-quadratic time algorithm with expected running time 𝒪(n² log² n log² log n) was given over 30 years ago [Eppstein '92]. We present the first improvement of this result, namely, a near-linear time algorithm to compute the 2-MinSumRadius that runs in expected 𝒪(n log² n log² log n) time. We generalize this result to any constant dimension d, for which we give an 𝒪(n^{2-1/(⌈d/2⌉ + 1) + ε}) time algorithm. Additionally, we give a near-quadratic time algorithm for 3-MinSumRadius in the plane that runs in expected 𝒪(n² log² n log² log n) time. All of these algorithms rely on insights that uncover a surprisingly simple structure of optimal solutions: we can specify a linear number of lines out of which one separates one of the clusters from the remaining clusters in an optimal solution.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • geometric clustering
  • minimize sum of radii
  • covering points with disks

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Mikkel Abrahamsen, Anna Adamaszek, Karl Bringmann, Vincent Cohen-Addad, Mehran Mehr, Eva Rotenberg, Alan Roytman, and Mikkel Thorup. Fast fencing. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages 564-573. ACM, 2018. URL: https://doi.org/10.1145/3188745.3188878.
  2. Mikkel Abrahamsen, Mark de Berg, Kevin Buchin, Mehran Mehr, and Ali D. Mehrabi. Minimum perimeter-sum partitions in the plane. Discret. Comput. Geom., 63(2):483-505, 2020. URL: https://doi.org/10.1007/s00454-019-00059-0.
  3. Pankaj K. Agarwal and Jirí Matousek. Dynamic half-space range reporting and its applications. Algorithmica, 13(4):325-345, 1995. URL: https://doi.org/10.1007/BF01293483.
  4. Pankaj K. Agarwal and Micha Sharir. Planar geometric location problems. Algorithmica, 11(2):185-195, 1994. URL: https://doi.org/10.1007/BF01182774.
  5. Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of Euclidean sum-of-squares clustering. Mach. Learn., 75(2):245-248, 2009. URL: https://doi.org/10.1007/s10994-009-5103-0.
  6. Helmut Alt, Esther M. Arkin, Hervé Brönnimann, Jeff Erickson, Sándor P. Fekete, Christian Knauer, Jonathan Lenchner, Joseph S. B. Mitchell, and Kim Whittlesey. Minimum-cost coverage of point sets by disks. In Proceedings of the 22nd ACM Symposium on Computational Geometry, SoCG, pages 449-458. ACM, 2006. URL: https://doi.org/10.1145/1137856.1137922.
  7. Mihai Badoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing, STOC, pages 250-257. ACM, 2002. URL: https://doi.org/10.1145/509907.509947.
  8. Moritz Buchem, Katja Ettmayr, Hugo Kooki Kasuya Rosado, and Andreas Wiese. A (3+ε)-approximation algorithm for the minimum sum of radii problem with outliers and extensions for generalized lower bounds. CoRR, abs/2311.06111, 2023. URL: https://doi.org/10.48550/ARXIV.2311.06111.
  9. Vasilis Capoyleas, Günter Rote, and Gerhard J. Woeginger. Geometric clusterings. J. Algorithms, 12(2):341-356, 1991. URL: https://doi.org/10.1016/0196-6774(91)90007-L.
  10. Timothy M. Chan. More planar two-center algorithms. Comput. Geom., 13(3):189-198, 1999. URL: https://doi.org/10.1016/S0925-7721(99)00019-X.
  11. Timothy M. Chan, Qizheng He, and Yuancheng Yu. On the fine-grained complexity of small-size geometric set cover and discrete k-center for small k. In 50th International Colloquium on Automata, Languages, and Programming, ICALP, volume 261 of LIPIcs, pages 34:1-34:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.34.
  12. Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of cluster diameters. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, Proceedings on 33rd Annual ACM Symposium on Theory of Computing, STOC, pages 1-10. ACM, 2001. URL: https://doi.org/10.1145/380752.380753.
  13. Kyungjin Cho and Eunjin Oh. Optimal algorithm for the planar two-center problem. CoRR, abs/2007.08784, 2020. URL: https://arxiv.org/abs/2007.08784.
  14. Sanjoy Dasgupta and Yoav Freund. Random projection trees for vector quantization. IEEE Trans. Inf. Theory, 55(7):3229-3242, 2009. URL: https://doi.org/10.1109/TIT.2009.2021326.
  15. Zvi Drezner. On the rectangular p-center problem. Naval Research Logistics (NRL), 34(2):229-234, 1987. Google Scholar
  16. David Eppstein. Dynamic three-dimensional linear programming. INFORMS J. Comput., 4(4):360-368, 1992. URL: https://doi.org/10.1287/ijoc.4.4.360.
  17. David Eppstein. Faster construction of planar two-centers. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 131-138. ACM/SIAM, 1997. URL: http://dl.acm.org/citation.cfm?id=314161.314198.
  18. Matt Gibson, Gaurav Kanade, Erik Krohn, Imran A. Pirwani, and Kasturi R. Varadarajan. On clustering to minimize the sum of radii. SIAM J. Comput., 41(1):47-60, 2012. URL: https://doi.org/10.1137/100798144.
  19. Johann Hagauer and Günter Rote. Three-clustering of points in the plane. Comput. Geom., 8:87-95, 1997. URL: https://doi.org/10.1016/S0925-7721(96)00022-3.
  20. John Hershberger. Minimizing the sum of diameters efficiently. Comput. Geom., 2:111-118, 1992. URL: https://doi.org/10.1016/0925-7721(92)90028-Q.
  21. Michael Hoffmann. A simple linear algorithm for computing rectilinear 3-centers. Comput. Geom., 31(3):150-165, 2005. URL: https://doi.org/10.1016/J.COMGEO.2004.12.002.
  22. Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted voronoi diagrams and randomization to variance-based k-clustering. In Proceedings of the 10th Annual Symposium on Computational Geometry, SoCG, pages 332-339. ACM, 1994. URL: https://doi.org/10.1145/177424.178042.
  23. D. T. Lee and Ying-Fung Wu. Geometric complexity of some location problems. Algorithmica, 1(2):193-211, 1986. URL: https://doi.org/10.1007/BF01840442.
  24. Meena Mahajan, Prajakta Nimbhorkar, and Kasturi R. Varadarajan. The planar k-means problem is NP-hard. Theor. Comput. Sci., 442:13-21, 2012. URL: https://doi.org/10.1016/j.tcs.2010.05.034.
  25. Nimrod Megiddo. Linear-time algorithms for linear programming in ℝ³ and related problems. SIAM J. Comput., 12(4):759-776, 1983. URL: https://doi.org/10.1137/0212052.
  26. Nimrod Megiddo and Kenneth J. Supowit. On the complexity of some common geometric location problems. SIAM J. Comput., 13(1):182-196, 1984. URL: https://doi.org/10.1137/0213014.
  27. Doron Nussbaum. Rectilinear p-piercing problems. In Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC, pages 316-323, 1997. URL: https://doi.org/10.1145/258726.258828.
  28. Michael Segal. On piercing sets of axis-parallel rectangles and rings. In Proceedings of the Annual European Symposium on Algorithms, ESA 1997, pages 430-442, 1997. URL: https://doi.org/10.1007/3-540-63397-9_33.
  29. Micha Sharir. A near-linear algorithm for the planar 2-center problem. Discret. Comput. Geom., 18(2):125-134, 1997. URL: https://doi.org/10.1007/PL00009311.
  30. Micha Sharir and Emo Welzl. Rectilinear and polygonal p-piercing and p-center problems. In Symposium on Computational Geometry (SoCG 1996), pages 122-132, 1996. URL: https://doi.org/10.1145/237218.237255.
  31. Haitao Wang. On the planar two-center problem and circular hulls. Discret. Comput. Geom., 68(4):1175-1226, 2022. URL: https://doi.org/10.1007/s00454-021-00358-5.
  32. Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In New Results and New Trends in Computer Science, Proceedings [on occasion of H. Maurer’s 50th birthday], volume 555 of Lecture Notes in Computer Science, pages 359-370. Springer, 1991. URL: https://doi.org/10.1007/BFB0038202.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail