Creative Commons Attribution 4.0 International license
For a field 𝔽 and integers d and k, a set of vectors of 𝔽^d is called k-nearly orthogonal if its members are non-self-orthogonal and every k+1 of them include an orthogonal pair. We prove that for every prime p there exists a positive constant δ = δ (p), such that for every field 𝔽 of characteristic p and for all integers k ≥ 2 and d ≥ k^{1/(p-1)}, there exists a k-nearly orthogonal set of at least d^{δ ⋅ k^{1/(p-1)} / log k} vectors of 𝔽^d. In particular, for the binary field we obtain a set of d^Ω(k/log k) vectors, and this is tight up to the log k term in the exponent. For comparison, the best known lower bound over the reals is d^Ω(log k / log log k)} (Alon and Szegedy, Graphs and Combin., 1999). The proof combines probabilistic and spectral arguments.
@InProceedings{chawin_et_al:LIPIcs.SoCG.2024.39,
author = {Chawin, Dror and Haviv, Ishay},
title = {{Nearly Orthogonal Sets over Finite Fields}},
booktitle = {40th International Symposium on Computational Geometry (SoCG 2024)},
pages = {39:1--39:11},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-316-4},
ISSN = {1868-8969},
year = {2024},
volume = {293},
editor = {Mulzer, Wolfgang and Phillips, Jeff M.},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.39},
URN = {urn:nbn:de:0030-drops-199848},
doi = {10.4230/LIPIcs.SoCG.2024.39},
annote = {Keywords: Nearly orthogonal sets, Finite fields}
}