An Improved Lower Bound on the Number of Pseudoline Arrangements

Authors Fernando Cortés Kühnast , Justin Dallant , Stefan Felsner , Manfred Scheucher



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.43.pdf
  • Filesize: 1.02 MB
  • 18 pages

Document Identifiers

Author Details

Fernando Cortés Kühnast
  • Institute of Mathematics, Technische Universität Berlin, Germany
Justin Dallant
  • Algorithms Research Group, Université libre de Bruxelles, Belgium
Stefan Felsner
  • Institute of Mathematics, Technische Universität Berlin, Germany
Manfred Scheucher
  • Institute of Mathematics, Technische Universität Berlin, Germany

Cite AsGet BibTex

Fernando Cortés Kühnast, Justin Dallant, Stefan Felsner, and Manfred Scheucher. An Improved Lower Bound on the Number of Pseudoline Arrangements. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 43:1-43:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.43

Abstract

Arrangements of pseudolines are classic objects in discrete and computational geometry. They have been studied with increasing intensity since their introduction almost 100 years ago. The study of the number B_n of non-isomorphic simple arrangements of n pseudolines goes back to Goodman and Pollack, Knuth, and others. It is known that B_n is in the order of 2^Θ(n²) and finding asymptotic bounds on b_n = log₂(B_n)/n² remains a challenging task. In 2011, Felsner and Valtr showed that 0.1887 ≤ b_n ≤ 0.6571 for sufficiently large n. The upper bound remains untouched but in 2020 Dumitrescu and Mandal improved the lower bound constant to 0.2083. Their approach utilizes the known values of B_n for up to n = 12. We tackle the lower bound by utilizing dynamic programming and the Lindström–Gessel–Viennot lemma. Our new bound is b_n ≥ 0.2721 for sufficiently large n. The result is based on a delicate interplay of theoretical ideas and computer assistance.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorics
  • Theory of computation → Computational geometry
Keywords
  • counting
  • pseudoline arrangement
  • recursive construction
  • bipermutation
  • divide and conquer
  • dynamic programming
  • computer-assisted proof

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Supplemental data. URL: https://github.com/fcorteskuehnast/counting-arrangements.
  2. Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M. Ziegler. Oriented Matroids, volume 46 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2 edition, 1999. URL: https://doi.org/10.1017/CBO9780511586507.
  3. Nicolas Bonichon, Cyril Gavoille, and Nicolas Hanusse. An information-theoretic upper bound of planar graphs using triangulation. In Annual Symposium on Theoretical Aspects of Computer Science (STACS 2003), pages 499-510. Springer, 2003. URL: https://doi.org/10.1007/3-540-36494-3_44.
  4. Nicolas Bonichon, Cyril Gavoille, and Nicolas Hanusse. An Information-Theoretic Upper Bound on Planar Graphs Using Well-Orderly Maps, pages 17-46. Birkhäuser, 2011. URL: https://doi.org/10.1007/978-0-8176-4904-3_2.
  5. Otfried Cheong. The Ipe extensible drawing editor. URL: http://ipe.otfried.org/.
  6. Fernando Cortés Kühnast. On the number of arrangements of pseudolines. Bachelor’s thesis, Technische Universität Berlin, Germany, 2023. URL: https://fcorteskuehnast.github.io/files/bachelor_thesis.pdf.
  7. Justin Dallant. Improved Lower Bound on the Number of Pseudoline Arrangements. http://arXiv.org/abs/2402.13923, 2024.
  8. Adrian Dumitrescu and Ritankar Mandal. New lower bounds for the number of pseudoline arrangements. Journal of Computational Geometry, 11:60-92, 2020. URL: https://doi.org/10.20382/jocg.v11i1a3.
  9. Herbert Edelsbrunner, Joseph O'Rourke, and Raimund Seidel. Constructing arrangements of lines and hyperplanes with applications. SIAM Journal on Computing, 15(2):341-363, 1986. URL: https://doi.org/10.1137/0215024.
  10. Stefan Felsner. On the Number of Arrangements of Pseudolines. Discrete & Computational Geometry, 18(3):257-267, 1997. URL: https://doi.org/10.1007/PL00009318.
  11. Stefan Felsner and Jacob E. Goodman. Pseudoline Arrangements. In C.D. Toth, J. O'Rourke, and J.E. Goodman, editors, Handbook of Discrete and Computational Geometry (3rd ed.). CRC Press, 2018. URL: https://doi.org/10.1201/9781315119601.
  12. Stefan Felsner and Manfred Scheucher. Arrangements of Pseudocircles: On Circularizability. Discrete & Computational Geometry, Ricky Pollack Memorial Issue, 64:776-813, 2020. URL: https://doi.org/10.1007/s00454-019-00077-y.
  13. Stefan Felsner and Pavel Valtr. Coding and Counting Arrangements of Pseudolines. Discrete & Computational Geometry, 46(3), 2011. URL: https://doi.org/10.1007/s00454-011-9366-4.
  14. Ira Gessel and Gérard Viennot. Binomial determinants, paths, and hook length formulae. Advances in Mathematics, 58(3):300-321, 1985. URL: https://doi.org/10.1016/0001-8708(85)90121-5.
  15. Jacob E. Goodman and Richard Pollack. Multidimensional Sorting. SIAM Journal on Computing, 12(3):484-507, 1983. URL: https://doi.org/10.1137/0212032.
  16. Branko Grünbaum. Arrangements and Spreads, volume 10 of CBMS Regional Conference Series in Mathematics. AMS, 1972 (reprinted 1980). URL: https://doi.org/10/knkd.
  17. Günter Rote. NumPSLA - An experimental research tool for pseudoline arrangements and order types, 2021. URL: https://github.com/guenterrote/NumPSLA/blob/main/NumPSLA-paper-2024-03-06.pdf.
  18. Jun Kawahara, Toshiki Saitoh, Ryo Yoshinaka, and Shin-ichi Minato. Counting Primitive Sorting Networks by πDDs, 2011. URL: https://api.semanticscholar.org/CorpusID:9525480.
  19. Donald E. Knuth. Axioms and Hulls, volume 606 of LNCS. Springer, 1992. URL: https://doi.org/10/bwfnz9.
  20. Jan Kynčl. Enumeration of simple complete topological graphs. European Journal of Combinatorics, 30(7):1676-1685, 2009. URL: https://doi.org/10.1016/j.ejc.2009.03.005.
  21. Fernando Cortés Kühnast, Justin Dallant, Stefan Felsner, and Manfred Scheucher. An Improved Lower Bound on the Number of Pseudoline Arrangements. http://arXiv.org/abs/2402.13107, 2024.
  22. Fernando Cortés Kühnast, Stefan Felsner, and Manfred Scheucher. An Improved Lower Bound on the Number of Pseudoline Arrangements. http://arXiv.org/abs/2402.13107v1, 2024.
  23. Friedrich Levi. Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade. Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, 78:256-267, 1926. Google Scholar
  24. Bernt Lindström. On the vector representations of induced matroids. Bulletin of the London Mathematical Society, 5(1):85-90, 1973. URL: https://doi.org/10.1112/blms/5.1.85.
  25. Jiří Matoušek. Lectures on Discrete Geometry. Springer, 2002. URL: https://doi.org/10.1007/978-1-4613-0039-7.
  26. János Pach and Géza Tóth. How many ways can one draw a graph? Combinatorica, 26(5):559-576, 2006. URL: https://doi.org/10.1007/s00493-006-0032-z.
  27. Matthew J. Samuel. Word posets, complexity, and Coxeter groups. http://arXiv.org/abs/1101.4655, 2011.
  28. Neil J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. URL: http://oeis.org.
  29. Katsuhisa Yamanaka, Shin-ichi Nakano, Yasuko Matsui, Ryuhei Uehara, and Kento Nakada. Efficient enumeration of all ladder lotteries and its application. Theoretical Computer Science, 411(16):1714-1722, 2010. URL: https://doi.org/10.1016/j.tcs.2010.01.002.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail