Stability and Approximations for Decorated Reeb Spaces

Authors Justin Curry , Washington Mio, Tom Needham , Osman Berat Okutan, Florian Russold



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.44.pdf
  • Filesize: 4.5 MB
  • 17 pages

Document Identifiers

Author Details

Justin Curry
  • University at Albany, State University of New York, NY, USA
Washington Mio
  • Florida State University, Tallahassee, FL, USA
Tom Needham
  • Florida State University, Tallahassee, FL, USA
Osman Berat Okutan
  • Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
Florian Russold
  • Graz University of Technology, Austria

Cite AsGet BibTex

Justin Curry, Washington Mio, Tom Needham, Osman Berat Okutan, and Florian Russold. Stability and Approximations for Decorated Reeb Spaces. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 44:1-44:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.44

Abstract

Given a map f:X → M from a topological space X to a metric space M, a decorated Reeb space consists of the Reeb space, together with an attribution function whose values recover geometric information lost during the construction of the Reeb space. For example, when M = ℝ is the real line, the Reeb space is the well-known Reeb graph, and the attributions may consist of persistence diagrams summarizing the level set topology of f. In this paper, we introduce decorated Reeb spaces in various flavors and prove that our constructions are Gromov-Hausdorff stable. We also provide results on approximating decorated Reeb spaces from finite samples and leverage these to develop a computational framework for applying these constructions to point cloud data.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Algebraic topology
  • Theory of computation → Computational geometry
Keywords
  • Reeb spaces
  • Gromov-Hausdorff distance
  • Persistent homology

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman, Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images: A stable vector representation of persistent homology. Journal of Machine Learning Research, 18, 2017. Google Scholar
  2. Soheil Anbouhi, Washington Mio, and Osman Berat Okutan. On metrics for analysis of functional data on geometric domains, 2024. URL: https://arxiv.org/abs/2309.10907.
  3. Ulrich Bauer, Xiaoyin Ge, and Yusu Wang. Measuring distance between Reeb graphs. In Proceedings of the thirtieth annual symposium on Computational geometry, pages 464-473, 2014. Google Scholar
  4. Andrew Blumberg and Michael Lesnick. Universality of the homotopy interleaving distance. Transactions of the American Mathematical Society, 376(12):8269-8307, 2023. Google Scholar
  5. Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems, 30(1-7):107-117, 1998. Google Scholar
  6. Gunnar Carlsson. Topological pattern recognition for point cloud data. Acta Numerica, 23:289-368, 2014. Google Scholar
  7. Frédéric Chazal, David Cohen-Steiner, Leonidas J Guibas, Facundo Mémoli, and Steve Y Oudot. Gromov-Hausdorff stable signatures for shapes using persistence. Computer Graphics Forum, 28(5):1393-1403, 2009. Google Scholar
  8. Frédéric Chazal, Vin De Silva, and Steve Oudot. Persistence stability for geometric complexes. Geometriae Dedicata, 173(1):193-214, 2014. Google Scholar
  9. William Crawley-Boevey. Decomposition of pointwise finite-dimensional persistence modules. Journal of Algebra and its Applications, 14(05):1550066, 2015. Google Scholar
  10. Justin Curry, Haibin Hang, Washington Mio, Tom Needham, and Osman Berat Okutan. Decorated merge trees for persistent topology. Journal of Applied and Computational Topology, 6(3):371-428, 2022. Google Scholar
  11. Justin Curry, Washington Mio, Tom Needham, Osman Berat Okutan, and Florian Russold. Convergence of leray cosheaves for decorated mapper graphs, 2023. URL: https://arxiv.org/abs/2303.00130.
  12. Justin Curry, Washington Mio, Tom Needham, Osman Berat Okutan, and Florian Russold. Stability and approximations for decorated reeb spaces, 2023. URL: https://arxiv.org/abs/2312.01982.
  13. Justin Curry, Washington Mio, Tom Needham, Osman Berat Okutan, and Florian Russold. Topologically attributed graphs for shape discrimination. In Topological, Algebraic and Geometric Learning Workshops 2023, pages 87-101. PMLR, 2023. Google Scholar
  14. Vin De Silva, Elizabeth Munch, and Amit Patel. Categorified Reeb graphs. Discrete & Computational Geometry, 55(4):854-906, 2016. Google Scholar
  15. Herbert Edelsbrunner, John Harer, and Amit K Patel. Reeb spaces of piecewise linear mappings. In Proceedings of the twenty-fourth annual symposium on Computational geometry, pages 242-250, 2008. Google Scholar
  16. Ryszard Engelking. General Topology. Heldermann Verlag Berlin, 1989. Google Scholar
  17. Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie Boisbunon, Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, et al. Pot: Python optimal transport. The Journal of Machine Learning Research, 22(1):3571-3578, 2021. Google Scholar
  18. Patrizio Frosini, Claudia Landi, and Facundo Mémoli. The persistent homotopy type distance. Homology, Homotopy and Applications, 21(2):231-259, 2019. Google Scholar
  19. Xiaoyin Ge, Issam Safa, Mikhail Belkin, and Yusu Wang. Data skeletonization via Reeb graphs. Advances in Neural Information Processing Systems, 24, 2011. Google Scholar
  20. Aleksandr Semenovich Kronrod. On functions of two variables. Uspekhi matematicheskikh nauk, 5(1):24-134, 1950. Google Scholar
  21. Claudia Landi. The rank invariant stability via interleavings. Research in computational topology, pages 1-10, 2018. Google Scholar
  22. Michael Lesnick. The theory of the interleaving distance on multidimensional persistence modules. Foundations of Computational Mathematics, 15(3):613-650, 2015. Google Scholar
  23. Mingzhe Li, Carson Storm, Austin Yang Li, Tom Needham, and Bei Wang. Comparing morse complexes using optimal transport: An experimental study, 2023. URL: https://arxiv.org/abs/2309.04681.
  24. Mingzhe Li, Xinyuan Yan, Lin Yan, Tom Needham, and Bei Wang. Flexible and probabilistic topology tracking with partial optimal transport, 2023. URL: https://arxiv.org/abs/2302.02895.
  25. Facundo Mémoli. Gromov-Wasserstein distances and the metric approach to object matching. Foundations of computational mathematics, 11:417-487, 2011. Google Scholar
  26. Dmitriy Morozov, Kenes Beketayev, and Gunther Weber. Interleaving distance between merge trees. Discrete and Computational Geometry, 49(22-45):52, 2013. Google Scholar
  27. James R Munkres. Elements of algebraic topology. CRC press, 2018. Google Scholar
  28. Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-Wasserstein averaging of kernel and distance matrices. In International conference on machine learning, pages 2664-2672. PMLR, 2016. Google Scholar
  29. Georges Reeb. Sur les points singuliers d'une forme de pfaff completement integrable ou d'une fonction numerique [on the singular points of a completely integrable pfaff form or of a numerical function]. Comptes Rendus Acad. Sciences Paris, 222:847-849, 1946. Google Scholar
  30. Paul Rosen, Mustafa Hajij, and Bei Wang. Homology-preserving multi-scale graph skeletonization using mapper on graphs, 2023. URL: https://arxiv.org/abs/1804.11242.
  31. Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics and visualization. In AAAI, 2015. URL: https://networkrepository.com.
  32. Vladimir Vasilievich Sharko. About Kronrod-Reeb graph of a function on a manifold. Methods of Functional Analysis and Topology, 12(04):389-396, 2006. Google Scholar
  33. Gurjeet Singh, Facundo Mémoli, Gunnar E Carlsson, et al. Topological methods for the analysis of high dimensional data sets and 3d object recognition. PBG@ Eurographics, 2:091-100, 2007. Google Scholar
  34. Robert W Sumner and Jovan Popović. Deformation transfer for triangle meshes. ACM Transactions on graphics (TOG), 23(3):399-405, 2004. Google Scholar
  35. Titouan Vayer, Laetitia Chapel, Rémi Flamary, Romain Tavenard, and Nicolas Courty. Fused Gromov-Wasserstein distance for structured objects. Algorithms, 13(9):212, 2020. Google Scholar
  36. Weiming Wang, Yang You, Wenhai Liu, and Cewu Lu. Point cloud classification with deep normalized Reeb graph convolution. Image and Vision Computing, 106:104092, 2021. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail