Beyond Chromatic Threshold via (p,q)-Theorem, and Blow-Up Phenomenon

Authors Hong Liu, Chong Shangguan , Jozef Skokan, Zixiang Xu



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.71.pdf
  • Filesize: 0.8 MB
  • 15 pages

Document Identifiers

Author Details

Hong Liu
  • Extremal Combinatorics and Probability Group, Institute for Basic Science, Daejeon, South Korea
Chong Shangguan
  • Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China
  • Frontiers Science Center for Nonlinear Expectations, Ministry of Education, Qingdao, China
Jozef Skokan
  • Department of Mathematics, London School of Economics, UK
Zixiang Xu
  • Extremal Combinatorics and Probability Group, Institute for Basic Science, Daejeon, South Korea

Cite AsGet BibTex

Hong Liu, Chong Shangguan, Jozef Skokan, and Zixiang Xu. Beyond Chromatic Threshold via (p,q)-Theorem, and Blow-Up Phenomenon. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 71:1-71:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.71

Abstract

We establish a novel connection between the well-known chromatic threshold problem in extremal combinatorics and the celebrated (p,q)-theorem in discrete geometry. In particular, for a graph G with bounded clique number and a natural density condition, we prove a (p,q)-theorem for an abstract convexity space associated with G. Our result strengthens those of Thomassen and Nikiforov on the chromatic threshold of cliques. Our (p,q)-theorem can also be viewed as a χ-boundedness result for (what we call) ultra maximal K_r-free graphs. We further show that the graphs under study are blow-ups of constant size graphs, improving a result of Oberkampf and Schacht on homomorphism threshold of cliques. Our result unravels the cause underpinning such a blow-up phenomenon, differentiating the chromatic and homomorphism threshold problems for cliques. Our result implies that for the homomorphism threshold problem, rather than the minimum degree condition usually considered in the literature, the decisive factor is a clique density condition on co-neighborhoods of vertices. More precisely, we show that if an n-vertex K_r-free graph G satisfies that the common neighborhood of every pair of non-adjacent vertices induces a subgraph with K_{r-2}-density at least ε > 0, then G must be a blow-up of some K_r-free graph F on at most 2^O(r/ε log1/ε) vertices. Furthermore, this single exponential bound is optimal. We construct examples with no K_r-free homomorphic image of size smaller than 2^Ω_r(1/ε).

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Hypergraphs
  • Mathematics of computing → Graph coloring
  • Mathematics of computing → Extremal graph theory
Keywords
  • (p,q)-theorem
  • fractional Helly number
  • weak ε-net
  • chromatic threshold
  • VC dimension

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Peter Allen, Julia Böttcher, Simon Griffiths, Yoshiharu Kohayakawa, and Robert Morris. The chromatic thresholds of graphs. Adv. Math., 235:261-295, 2013. URL: https://doi.org/10.1016/j.aim.2012.11.016.
  2. Noga Alon, Gil Kalai, Jiří Matoušek, and Roy Meshulam. Transversal numbers for hypergraphs arising in geometry. Adv. in Appl. Math., 29(1):79-101, 2002. URL: https://doi.org/10.1016/S0196-8858(02)00003-9.
  3. Noga Alon and Daniel J. Kleitman. Piercing convex sets and the Hadwiger-Debrunner (p,q)-problem. Adv. Math., 96(1):103-112, 1992. URL: https://doi.org/10.1016/0001-8708(92)90052-M.
  4. Nina Amenta, Jesús A. De Loera, and Pablo Soberón. Helly’s theorem: new variations and applications. In Algebraic and geometric methods in discrete mathematics. AMS special session on algebraic and geometric methods in applied discrete mathematics, San Antonio, TX, USA, January 11, 2015. Proceedings, pages 55-95. Providence, RI: American Mathematical Society (AMS), 2017. URL: https://doi.org/10.1090/conm/685/13718.
  5. B. Andrásfai, P. Erdős, and V. T. Sós. On the connection between chromatic number, maximal clique and minimal degree of a graph. Discrete Math., 8:205-218, 1974. URL: https://doi.org/10.1016/0012-365X(74)90133-2.
  6. Imre Bárány. Combinatorial convexity, volume 77 of University Lecture Series. American Mathematical Society, Providence, RI, 2021. URL: https://doi.org/10.1090/ulect/077.
  7. Imre Bárány and Jiří Matoušek. A fractional Helly theorem for convex lattice sets. Adv. Math., 174(2):227-235, 2003. URL: https://doi.org/10.1016/S0001-8708(02)00037-3.
  8. Imre Bárány and Pablo Soberón. Tverberg’s theorem is 50 years old: a survey. Bull. Amer. Math. Soc. (N.S.), 55(4):459-492, 2018. URL: https://doi.org/10.1090/bull/1634.
  9. Pavle V. M. Blagojević and Günter M. Ziegler. Beyond the Borsuk-Ulam theorem: the topological Tverberg story. In A journey through discrete mathematics, pages 273-341. Springer, Cham, 2017. Google Scholar
  10. Stephan Brandt. On the structure of dense triangle-free graphs. Combin. Probab. Comput., 8(3):237-245, 1999. URL: https://doi.org/10.1017/S0963548399003831.
  11. Stephan Brandt and Stéphan Thomassé. Dense triangle-free graphs are four-colorable: A solution to the Erdős-Simonovits problem. preprint, 2011. Google Scholar
  12. C. C. Chen, G. P. Jin, and K. M. Koh. Triangle-free graphs with large degree. Combin. Probab. Comput., 6(4):381-396, 1997. URL: https://doi.org/10.1017/S0963548397003167.
  13. Jesús A. De Loera, Xavier Goaoc, Frédéric Meunier, and Nabil H. Mustafa. The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg. Bull. Amer. Math. Soc. (N.S.), 56(3):415-511, 2019. URL: https://doi.org/10.1090/bull/1653.
  14. Jean-Paul Doignon. Convexity in cristallographical lattices. J. Geom., 3:71-85, 1973. URL: https://doi.org/10.1007/BF01949705.
  15. Oliver Ebsen and Mathias Schacht. Homomorphism thresholds for odd cycles. Combinatorica, 40(1):39-62, 2020. URL: https://doi.org/10.1007/s00493-019-3920-8.
  16. Jürgen Eckhoff. Intersection properties of boxes. I. An upper-bound theorem. Israel J. Math., 62(3):283-301, 1988. URL: https://doi.org/10.1007/BF02783298.
  17. Jürgen Eckhoff. Helly, Radon, and Carathéodory type theorems. In Handbook of convex geometry, Vol. A, B, pages 389-448. North-Holland, Amsterdam, 1993. Google Scholar
  18. P. Erdős. Graph theory and probability. Canadian J. Math., 11:34-38, 1959. URL: https://doi.org/10.4153/CJM-1959-003-9.
  19. P. Erdős. On the number of complete subgraphs contained in certain graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl., 7:459-464, 1962. Google Scholar
  20. P. Erdős and M. Simonovits. On a valence problem in extremal graph theory. Discrete Math., 5:323-334, 1973. URL: https://doi.org/10.1016/0012-365X(73)90126-X.
  21. Pál Erdős. Some recent results on extremal problems in graph theory. (Results). Theory Graphs, Int. Symp. Rome 1966, 117-123 (English), 124-130 (French) (1967)., 1967. Google Scholar
  22. Wayne Goddard and Jeremy Lyle. Dense graphs with small clique number. J. Graph Theory, 66(4):319-331, 2011. URL: https://doi.org/10.1002/jgt.20505.
  23. H. Hadwiger and H. Debrunner. Über eine Variante zum Hellyschen Satz. Arch. Math. (Basel), 8:309-313, 1957. URL: https://doi.org/10.1007/BF01898794.
  24. Roland Häggkvist. Odd cycles of specified length in nonbipartite graphs. In Graph theory (Cambridge, 1981), North-Holland Math. Stud., 62, pages 89-99. North-Holland Publishing Company, 1982. Google Scholar
  25. David Haussler and Emo Welzl. ε-nets and simplex range queries. Discrete Comput. Geom., 2(2):127-151, 1987. URL: https://doi.org/10.1007/BF02187876.
  26. Ed. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresber. Dtsch. Math.-Ver., 32:175-176, 1923. Google Scholar
  27. Andreas F. Holmsen. Large cliques in hypergraphs with forbidden substructures. Combinatorica, 40(4):527-537, 2020. URL: https://doi.org/10.1007/s00493-019-4169-y.
  28. Guo Ping Jin. Triangle-free four-chromatic graphs. Discrete Math., 145(1-3):151-170, 1995. URL: https://doi.org/10.1016/0012-365X(94)00063-O.
  29. M. Katchalski and A. Liu. A problem of geometry in ℝⁿ. Proc. Amer. Math. Soc., 75(2):284-288, 1979. URL: https://doi.org/10.2307/2042758.
  30. Shoham Letzter and Richard Snyder. The homomorphism threshold of C₃,C₅-free graphs. J. Graph Theory, 90(1):83-106, 2019. URL: https://doi.org/10.1002/jgt.22369.
  31. F. W. Levi. On Helly’s theorem and the axioms of convexity. J. Indian Math. Soc. (N.S.), 15(Part):65-76, 1951. Google Scholar
  32. Hong Liu, Chong Shangguan, Jozef Skokan, and Zixiang Xu. Beyond chromatic threshold via (p,q)-theorem, and sharp blow-up phenomenon. arXiv preprint, 2024. URL: https://arxiv.org/abs/2403.17910.
  33. Tomasz Łuczak. On the structure of triangle-free graphs of large minimum degree. Combinatorica, 26(4):489-493, 2006. URL: https://doi.org/10.1007/s00493-006-0028-8.
  34. Tomasz Łuczak and Stéphan Thomassé. Coloring dense graphs via VC-dimension. arXiv preprint, 2010. URL: https://arxiv.org/abs/1007.1670.
  35. Jiří Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002. URL: https://doi.org/10.1007/978-1-4613-0039-7.
  36. Jiří Matoušek. Bounded VC-dimension implies a fractional Helly theorem. Discrete Comput. Geom., 31(2):251-255, 2004. URL: https://doi.org/10.1007/s00454-003-2859-z.
  37. Vladimir Nikiforov. Chromatic number and minimum degree of K_r-free graphs. arXiv preprint, 2010. URL: https://arxiv.org/abs/1001.2070.
  38. Heiner Oberkampf and Mathias Schacht. On the structure of dense graphs with bounded clique number. Comb. Probab. Comput., 29(5):641-649, 2020. URL: https://doi.org/10.1017/S0963548319000324.
  39. Johann Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. Math. Ann., 83(1-2):113-115, 1921. URL: https://doi.org/10.1007/BF01464231.
  40. Maya Sankar. Homotopy and the homomorphism threshold of odd cycles. arXiv preprint, 2022. URL: https://arxiv.org/abs/2206.07525.
  41. M. Simonovits. A method for solving extremal problems in graph theory, stability problems. Theory of Graphs, Proc. Colloq. Tihany, Hungary 1966, 279-319 (1968)., 1968. Google Scholar
  42. Endre Szemerédi. Regular partitions of graphs. Problèmes combinatoires et théorie des graphes, Orsay 1976, Colloq. int. CNRS No. 260, 399-401 (1978)., 1978. Google Scholar
  43. Carsten Thomassen. On the chromatic number of triangle-free graphs of large minimum degree. Combinatorica, 22(4):591-596, 2002. URL: https://doi.org/10.1007/s00493-002-0009-5.
  44. Carsten Thomassen. On the chromatic number of pentagon-free graphs of large minimum degree. Combinatorica, 27(2):241-243, 2007. URL: https://doi.org/10.1007/s00493-007-0054-1.
  45. P. Turán. Eine extremalaufgabe aus der graphentheorie. Fiz Lapok, pages 436-452, 1941. Google Scholar
  46. M. L. J. van de Vel. Theory of convex structures, volume 50 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, 1993. Google Scholar