Measure-Theoretic Reeb Graphs and Reeb Spaces

Authors Qingsong Wang , Guanqun Ma , Raghavendra Sridharamurthy , Bei Wang



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.80.pdf
  • Filesize: 1.84 MB
  • 18 pages

Document Identifiers

Author Details

Qingsong Wang
  • University of Utah, Salt Lake City, UT, USA
Guanqun Ma
  • University of Utah, Salt Lake City, UT, USA
Raghavendra Sridharamurthy
  • University of Utah, Salt Lake City, UT, USA
Bei Wang
  • University of Utah, Salt Lake City, UT, USA

Cite AsGet BibTex

Qingsong Wang, Guanqun Ma, Raghavendra Sridharamurthy, and Bei Wang. Measure-Theoretic Reeb Graphs and Reeb Spaces. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 80:1-80:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.80

Abstract

A Reeb graph is a graphical representation of a scalar function on a topological space that encodes the topology of the level sets. A Reeb space is a generalization of the Reeb graph to a multiparameter function. In this paper, we propose novel constructions of Reeb graphs and Reeb spaces that incorporate the use of a measure. Specifically, we introduce measure-theoretic Reeb graphs and Reeb spaces when the domain or the range is modeled as a metric measure space (i.e., a metric space equipped with a measure). Our main goal is to enhance the robustness of the Reeb graph and Reeb space in representing the topological features of a scalar field while accounting for the distribution of the measure. We first introduce a Reeb graph with local smoothing and prove its stability with respect to the interleaving distance. We then prove the stability of a Reeb graph of a metric measure space with respect to the measure, defined using the distance to a measure or the kernel distance to a measure, respectively.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
  • Mathematics of computing → Topology
Keywords
  • Reeb graph
  • Reeb space
  • metric measure space
  • topological data analysis

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Michał Adamaszek, Henry Adams, and Florian Frick. Metric reconstruction via optimal transport. SIAM Journal on Applied Algebra and Geometry, 2(4):597-619, 2018. Google Scholar
  2. Henry Adams, Facundo Mémoli, Michael Moy, and Qingsong Wang. The persistent topology of optimal transport based metric thickenings. Algebraic & Geometric Topology, 24(1):393-447, 2024. Google Scholar
  3. David Alvarez-Melis and Tommi Jaakkola. Gromov-Wasserstein alignment of word embedding spaces. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun'ichi Tsujii, editors, Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1881-1890, Brussels, Belgium, 2018. Association for Computational Linguistics. Google Scholar
  4. Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In International conference on machine learning, pages 214-223. PMLR, 2017. Google Scholar
  5. Aravindakshan Babu. Zigzag Coarsenings, Mapper Stability and Gene-network Analyses. PhD thesis, Stanford University, 2013. Google Scholar
  6. Håvard Bakke Bjerkevik. On the stability of interval decomposable persistence modules. Discrete & Computational Geometry, 66(1):92-121, 2021. Google Scholar
  7. Ulrich Bauer, Håvard Bakke Bjerkevik, and Benedikt Fluhr. Quasi-universality of Reeb graph distances. In 38th International Symposium on Computational Geometry (SoCG 2022), volume 224 of Leibniz International Proceedings in Informatics (LIPIcs), pages 14:1-14:18, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Google Scholar
  8. Ulrich Bauer, Barbara Di Fabio, and Claudia Landi. An edit distance for Reeb graphs. In A. Ferreira, A. Giachetti, and D. Giorgi, editors, Eurographics Workshop on 3D Object Retrieval, Eindhoven, The Netherlands, 2016. The Eurographics Association. Google Scholar
  9. Ulrich Bauer, Xiaoyin Ge, and Yusu Wang. Measuring distance between Reeb graphs. In Proceedings of the 30th International Symposium on Computational Geometry, pages 464-474, 2014. Google Scholar
  10. Ulrich Bauer, Claudia Landi, and Facundo Memoli. The Reeb graph edit distance is universal. Foundations of Computational Mathematics, 21(5):1441-1464, 2020. Google Scholar
  11. Ulrich Bauer, Elizabeth Munch, and Yusu Wang. Strong equivalence of the interleaving and functional distortion metrics for Reeb graphs. In 31st International Symposium on Computational Geometry (SoCG 2015), volume 34, pages 461-475. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. Google Scholar
  12. S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. Reeb graphs for shape analysis and applications. Theoretical Computer Science, 392(1-3):5-22, 2008. Google Scholar
  13. Andrew J Blumberg, Itamar Gal, Michael A Mandell, and Matthew Pancia. Robust statistics, hypothesis testing, and confidence intervals for persistent homology on metric measure spaces. Foundations of Computational Mathematics, 14:745-789, 2014. Google Scholar
  14. Brian Bollen, Erin Chambers, Joshua A. Levine, and Elizabeth Munch. Reeb graph metrics from the ground up. arXiv preprint, 2022. URL: https://arxiv.org/abs/2110.05631.
  15. Magnus Botnan and Michael Lesnick. Algebraic stability of zigzag persistence modules. Algebraic & Geometric Topology, 18(6):3133-3204, 2018. Google Scholar
  16. Adam Brown, Omer Bobrowski, Elizabeth Munch, and Bei Wang. Probabilistic convergence and stability of random Mapper graphs. Journal of Applied and Computational Topology, 5:99-140, 2021. Google Scholar
  17. Peter Bubenik, Vin de Silva, and Jonathan Scott. Interleaving and Gromov-Hausdorff distance. arXiv preprint, 2018. URL: https://arxiv.org/abs/1707.06288.
  18. Mickaël Buchet. Topological inference from measures. Theses, Université Paris Sud - Paris XI, December 2014. Google Scholar
  19. Mickaël Buchet, Frédéric Chazal, Steve Y Oudot, and Donald R Sheehy. Efficient and robust persistent homology for measures. Computational Geometry, 58:70-96, 2016. Google Scholar
  20. Hamish Carr, Jack Snoeyink, and Michiel Van De Panne. Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree. Computational Geometry, 43(1):42-58, 2010. Google Scholar
  21. Mathieu Carriére, Bertrand Michel, and Steve Oudot. Statistical analysis and parameter selection for Mapper. Journal of Machine Learning Research, 19:1-39, 2018. Google Scholar
  22. Mathieu Carrière and Steve Oudot. Local equivalence and intrinsic metrics between Reeb graphs. In 33rd International Symposium on Computational Geometry (SoCG 2017), volume 77, pages 25:1-25:15, Dagstuhl, Germany, 2017. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Google Scholar
  23. Mathieu Carriére and Steve Oudot. Structure and stability of the one-dimensional Mapper. Foundations of Computational Mathematics, 18(6):1333-1396, 2018. Google Scholar
  24. Erin Wolf Chambers, Elizabeth Munch, and Tim Ophelders. A family of metrics from the truncated smoothing of Reeb graphs. In Kevin Buchin and Éric Colin de Verdière, editors, 37th International Symposium on Computational Geometry (SoCG 2021), volume 189 of Leibniz International Proceedings in Informatics (LIPIcs), pages 22:1-22:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Google Scholar
  25. Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J. Guibas, and Steve Y. Oudot. Proximity of persistence modules and their diagrams. In 25th Annual Symposium on Computational Geometry (SoCG 2009), pages 237-246, New York, NY, USA, 2009. Association for Computing Machinery. Google Scholar
  26. Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geometric inference for probability measures. Foundations of Computational Mathematics, 11:733-751, 2011. Google Scholar
  27. Frédéric Chazal and Jian Sun. Gromov-hausdorff approximation of filament structure using Reeb-type graph. In Proceedings of the thirtieth annual symposium on Computational geometry, pages 491-500, 2014. Google Scholar
  28. Fang Chen, Harald Obermaier, Hans Hagen, Bernd Hamann, Julien Tierny, and Valerio Pascucci. Topology analysis of time-dependent multi-fluid data using the Reeb graph. Computer Aided Geometric Design, 30(6):557-566, 2013. Google Scholar
  29. Samantha Chen, Sunhyuk Lim, Facundo Mémoli, Zhengchao Wan, and Yusu Wang. Weisfeiler-Lehman meets Gromov-Wasserstein. In International Conference on Machine Learning, pages 3371-3416. PMLR, 2022. Google Scholar
  30. Justin Curry. Sheaves, Cosheaves and Applications. PhD thesis, University of Pennsylvania, 2014. Google Scholar
  31. Vin De Silva, Elizabeth Munch, and Amit Patel. Categorified Reeb graphs. Discrete & Computational Geometry, 55(4):854-906, 2016. Google Scholar
  32. Tamal K Dey, Fengtao Fan, and Yusu Wang. An efficient computation of handle and tunnel loops via Reeb graphs. ACM Transactions on Graphics (TOG), 32(4):1-10, 2013. Google Scholar
  33. Tamal K. Dey, Facundo Mémoli, and Yusu Wang. Topological analysis of nerves, Reeb spaces, Mappers, and multiscale Mappers. In Boris Aronov and Matthew J. Katz, editors, 33rd International Symposium on Computational Geometry, volume 77 of Leibniz International Proceedings in Informatics (LIPIcs), pages 36:1-36:16, Dagstuhl, Germany, 2017. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Google Scholar
  34. Barbara Di Fabio and Claudia Landi. The edit distance for Reeb graphs of surfaces. Discrete & Computational Geometry, 55(2):423-461, 2016. Google Scholar
  35. Herbert Edelsbrunner, John Harer, and Amit K Patel. Reeb spaces of piecewise linear mappings. In Proceedings of the twenty-fourth annual symposium on Computational geometry, pages 242-250, 2008. Google Scholar
  36. Xiaoyin Ge, Issam Safa, Mikhail Belkin, and Yusu Wang. Data skeletonization via Reeb graphs. Advances in Neural Information Processing Systems, 24, 2011. Google Scholar
  37. Haibin Hang, Facundo Mémoli, and Washington Mio. A topological study of functional data and fréchet functions of metric measure spaces. Journal of Applied and Computational Topology, 3(4):359-380, 2019. Google Scholar
  38. Christian Heine, Heike Leitte, Mario Hlawitschka, Federico Iuricich, Leila De Floriani, Gerik Scheuermann, Hans Hagen, and Christoph Garth. A survey of topology-based methods in visualization. Computer Graphics Forum (CGF), 35(3):643-667, 2016. Google Scholar
  39. Franck Hétroy and Dominique Attali. Topological quadrangulations of closed triangulated surfaces using the Reeb graph. Graphical Models, 65(1-3):131-148, 2003. Google Scholar
  40. Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L. Kunii. Topology matching for fully automatic similarity estimation of 3D shapes. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 2001), pages 203-212, 2001. Google Scholar
  41. Facundo Mémoli, Osman Berat Okutan, and Qingsong Wang. Metric graph approximations of geodesic spaces. arXiv preprint, 2018. URL: https://arxiv.org/abs/1809.05566.
  42. Dmitriy Morozov, Kenes Beketayev, and Gunther Weber. Interleaving distance between merge trees. Proceedings of Topology-Based Methods in Visualization (TopoInVis), 2013. Google Scholar
  43. Elizabeth Munch and Anastasios Stefanou. The 𝓁^∞-cophenetic metric for phylogenetic trees as an interleaving distance, volume 17 of Association for Women in Mathematics Series, pages 109-127. Springer International Publishing, Cham, 2019. Google Scholar
  44. Elizabeth Munch and Bei Wang. Convergence between categorical representations of Reeb space and Mapper. In 32nd International Symposium on Computational Geometry (SoCG 2016). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. Google Scholar
  45. Monica Nicolau, Arnold J. Levine, and Gunnar Carlsson. Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proceedings of the National Academy of Sciences, 108(17):7265-7270, 2011. Google Scholar
  46. Jeff M. Phillips. ε-samples for kernels. In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1622-1632, 2013. Google Scholar
  47. Jeff M Phillips, Bei Wang, and Yan Zheng. Geometric inference on kernel density estimates. In Proceedings of the 31st International Symposium on Computational Geometry. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. Google Scholar
  48. Georges Reeb. Sur les points singuliers d'une forme de pfaff completement integrable ou d'une fonction numerique [on the singular points of a completely integrable pfaff form or of a numerical function]. Comptes Rendus Acad. Sciences Paris, 222:847-849, 1946. Google Scholar
  49. Gurjeet Singh, Facundo Mémoli, and Gunnar E. Carlsson. Topological methods for the analysis of high dimensional data sets and 3d object recognition. In Mario Botsch, Renato Pajarola, Baoquan Chen, and Matthias Zwicker, editors, 4th Symposium on Point Based Graphics, 2007, pages 91-100. Eurographics Association, 2007. Google Scholar
  50. Raghavendra Sridharamurthy, Talha Bin Masood, Adhitya Kamakshidasan, and Vijay Natarajan. Edit distance between merge trees. IEEE Transactions on Visualization and Computer Graphics (TVCG), 26(3):1518-1531, 2020. Google Scholar
  51. Bharath K Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and Gert RG Lanckriet. Hilbert space embeddings and metrics on probability measures. The Journal of Machine Learning Research, 11:1517-1561, 2010. Google Scholar
  52. Karl-Theodor Sturm. On the geometry of metric measure spaces I. Acta Mathematica, 196(1):65-131, 2006. Google Scholar
  53. Julien Tierny, Attila Gyulassy, Eddie Simon, and Valerio Pascucci. Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees. IEEE Transactions on Visualization and Computer Graphics, 15(6):1177-1184, 2009. Google Scholar
  54. Julien Tierny, Jean-Philippe Vandeborre, and Mohamed Daoudi. Partial 3d shape retrieval by Reeb pattern unfolding. Computer Graphics Forum, 28(1):41-55, 2009. Google Scholar
  55. Elena Farahbakhsh Touli and Yusu Wang. FPT-algorithms for computing Gromov-Hausdorff and interleaving distances between trees. Proceedings of the 27th Annual European Symposium on Algorithms, pages 83:1-83:14, 2019. Google Scholar
  56. Tony Tung and Francis Schmitt. The augmented multiresolution Reeb graph approach for content-based retrieval of 3d shapes. International Journal of Shape Modeling, 11(01):91-120, 2005. Google Scholar
  57. Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009. Google Scholar
  58. Qingsong Wang, Guanquan Ma, Raghavendra Sridharamurthy, and Bei Wang. Measure theoretic Reeb graphs and Reeb spaces. arXiv preprint, 2024. URL: https://arxiv.org/abs/2401.06748.
  59. Zoë Wood, Hugues Hoppe, Mathieu Desbrun, and Peter Schröder. Removing excess topology from isosurfaces. ACM Transactions on Graphics (TOG), 23(2):190-208, 2004. Google Scholar
  60. Lin Yan, Talha Bin Masood, Raghavendra Sridharamurthy, Farhan Rasheed, Vijay Natarajan, Ingrid Hotz, and Bei Wang. Scalar field comparison with topological descriptors: properties and applications for scientific visualization. Computer Graphics Forum (CGF), 40(3):599-633, 2021. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail