LIPIcs.SoCG.2024.9.pdf
- Filesize: 0.87 MB
- 15 pages
Let d be a (well-behaved) shortest-path metric defined on a path-connected subset of ℝ² and let 𝒟 = {D_1,…,D_n} be a set of geodesic disks with respect to the metric d. We prove that 𝒢^×(𝒟), the intersection graph of the disks in 𝒟, has a clique-based separator consisting of O(n^{3/4+ε}) cliques. This significantly extends the class of objects whose intersection graphs have small clique-based separators. Our clique-based separator yields an algorithm for q-Coloring that runs in time 2^O(n^{3/4+ε}), assuming the boundaries of the disks D_i can be computed in polynomial time. We also use our clique-based separator to obtain a simple, efficient, and almost exact distance oracle for intersection graphs of geodesic disks. Our distance oracle uses O(n^{7/4+ε}) storage and can report the hop distance between any two nodes in 𝒢^×(𝒟) in O(n^{3/4+ε}) time, up to an additive error of one. So far, distance oracles with an additive error of one that use subquadratic storage and sublinear query time were not known for such general graph classes.
Feedback for Dagstuhl Publishing