We introduce the contiguous art gallery problem which is to guard the boundary of a simple polygon with a minimum number of guards such that each guard covers exactly one contiguous portion of the boundary. Art gallery problems are often NP-hard. In particular, it is NP-hard to minimize the number of guards to see the boundary of a simple polygon, without the contiguity constraint. This paper is a merge of three concurrent works [Ahmad Biniaz et al., 2024; Magnus Christian Ring Merrild et al., 2024; Eliot W. Robson et al., 2024] each showing that (surprisingly) the contiguous art gallery problem is solvable in polynomial time. The common idea of all three approaches is developing a greedy function that maps a point on the boundary to the furthest point on the boundary so that the contiguous interval along the boundary between them could be guarded by one guard. Repeatedly applying this function immediately leads to an OPT+1 approximation. By studying this greedy algorithm, we present three different approaches that achieve an optimal solution. The first and second approach apply this greedy algorithm from different points on the boundary that could be found in advance or on the fly while traversing along the boundary (respectively). The third approach represents this function as a piecewise linear rational function, which can be reduced to an abstract arc cover problem involving infinite families of arcs. We identify other problems that can be represented by similar functions, and solve them via the third approach. From the combinatorial point of view, we show that any n-vertex polygon can be guarded by at most ⌊(n-2)/2⌋ guards. This bound is tight because there are polygons that require this many guards.
@InProceedings{biniaz_et_al:LIPIcs.SoCG.2025.20, author = {Biniaz, Ahmad and Maheshwari, Anil and Merrild, Magnus Christian Ring and Mitchell, Joseph S. B. and Odak, Saeed and Polishchuk, Valentin and Robson, Eliot W. and Rysgaard, Casper Moldrup and Schou, Jens Kristian Refsgaard and Shermer, Thomas and Spalding-Jamieson, Jack and Svenning, Rolf and Zheng, Da Wei}, title = {{Polynomial-Time Algorithms for Contiguous Art Gallery and Related Problems}}, booktitle = {41st International Symposium on Computational Geometry (SoCG 2025)}, pages = {20:1--20:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-370-6}, ISSN = {1868-8969}, year = {2025}, volume = {332}, editor = {Aichholzer, Oswin and Wang, Haitao}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.20}, URN = {urn:nbn:de:0030-drops-231720}, doi = {10.4230/LIPIcs.SoCG.2025.20}, annote = {Keywords: Art Gallery Problem, Computational Geometry, Combinatorics, Discrete Algorithms} }
Feedback for Dagstuhl Publishing