The crossing number of a graph is the least number of crossings over all drawings of the graph in the plane. Computing the crossing number of a given graph is NP-hard, but fixed-parameter tractable (FPT) with respect to the natural parameter. Two well-known variants of the problem are 2-layer crossing minimization and circular crossing minimization, where every vertex must lie on one of two layers, namely two parallel lines, or a circle, respectively. In both cases, edges are drawn as straight-line segments. Both variants are NP-hard, but admit FPT-algorithms with respect to the natural parameter. In recent years, in the context of beyond-planar graphs, a local version of the crossing number has also received considerable attention. A graph is k-planar if it admits a drawing with at most k crossings per edge. In contrast to the crossing number, recognizing k-planar graphs is NP-hard even if k = 1 and hence not likely to be FPT with respect to the natural parameter k. In this paper, we consider the two above variants in the local setting. The k-planar graphs that admit a straight-line drawing with vertices on two layers or on a circle are called 2-layer k-planar and outer k-planar graphs, respectively. We study the parameterized complexity of the two recognition problems with respect to the natural parameter k. For k = 0, the two classes of graphs are exactly the caterpillars and outerplanar graphs, respectively, which can be recognized in linear time. Two groups of researchers independently showed that outer 1-planar graphs can also be recognized in linear time [Hong et al., Algorithmica 2015; Auer et al., Algorithmica 2016]. One group asked explicitly whether outer 2-planar graphs can be recognized in polynomial time. Our main contribution consists of XP-algorithms for recognizing 2-layer k-planar graphs and outer k-planar graphs, which implies that both recognition problems can be solved in polynomial time for every fixed k. We complement these results by showing that recognizing 2-layer k-planar graphs is XNLP-complete and that recognizing outer k-planar graphs is XNLP-hard. This implies that both problems are W[t]-hard for every t and that it is unlikely that they admit FPT-algorithms. On the other hand, we present an FPT-algorithm for recognizing 2-layer k-planar graphs where the order of the vertices on one layer is specified.
@InProceedings{kobayashi_et_al:LIPIcs.SoCG.2025.65, author = {Kobayashi, Yasuaki and Okada, Yuto and Wolff, Alexander}, title = {{Recognizing 2-Layer and Outer k-Planar Graphs}}, booktitle = {41st International Symposium on Computational Geometry (SoCG 2025)}, pages = {65:1--65:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-370-6}, ISSN = {1868-8969}, year = {2025}, volume = {332}, editor = {Aichholzer, Oswin and Wang, Haitao}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.65}, URN = {urn:nbn:de:0030-drops-232170}, doi = {10.4230/LIPIcs.SoCG.2025.65}, annote = {Keywords: 2-layer k-planar graphs, outer k-planar graphs, recognition algorithms, local crossing number, bandwidth, FPT, XNLP, XP, W\lbrackt\rbrack} }
Feedback for Dagstuhl Publishing