,
Uli Wagner
Creative Commons Attribution 4.0 International license
A long-standing conjecture of Eckhoff, Linhart, and Welzl, which would generalize McMullen’s Upper Bound Theorem for polytopes and refine asymptotic bounds due to Clarkson, asserts that for k ⩽ ⌊(n-d-2)/2⌋, the complexity of the (⩽ k)-level in a simple arrangement of n hemispheres in S^d is maximized for arrangements that are polar duals of neighborly d-polytopes. We prove this conjecture in the case n = d+4. By Gale duality, this implies the following result about crossing numbers: In every spherical arc drawing of K_n in S² (given by a set V ⊂ S² of n unit vectors connected by spherical arcs), the number of crossings is at least 1/4 ⌊n/2⌋ ⌊(n-1)/2⌋ ⌊(n-2)/2⌋ ⌊(n-3)/2⌋. This lower bound is attained if every open linear halfspace contains at least ⌊(n-2)/2⌋ of the vectors in V. Moreover, we determine the space of all linear and affine relations that hold between the face numbers of levels in simple arrangements of n hemispheres in S^d. This completes a long line of research on such relations, answers a question posed by Andrzejak and Welzl in 2003, and generalizes the classical fact that the Dehn-Sommerville relations generate all linear relations between the face numbers of simple polytopes (which correspond to the 0-level). To prove these results, we introduce the notion of the g-matrix, which encodes the face numbers of levels in an arrangement and generalizes the classical g-vector of a polytope.
@InProceedings{streltsova_et_al:LIPIcs.SoCG.2025.75,
author = {Streltsova, Elizaveta and Wagner, Uli},
title = {{Levels in Arrangements: Linear Relations, the g-Matrix, and Applications to Crossing Numbers}},
booktitle = {41st International Symposium on Computational Geometry (SoCG 2025)},
pages = {75:1--75:18},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-370-6},
ISSN = {1868-8969},
year = {2025},
volume = {332},
editor = {Aichholzer, Oswin and Wang, Haitao},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.75},
URN = {urn:nbn:de:0030-drops-232276},
doi = {10.4230/LIPIcs.SoCG.2025.75},
annote = {Keywords: Levels in arrangements, k-sets, k-facets, convex polytopes, f-vector, h-vector, g-vector, Dehn-Sommerville relations, Radon partitions, Gale duality, g-matrix}
}