For fixed d ≥ 3, we construct subsets of the d-dimensional lattice cube [n]^d of size n^{3/(d + 1) - o(1)} with no d+2 points on a sphere or a hyperplane. This improves the previously best known bound of Ω(n^{1/(d-1)}) due to Thiele from 1995.
@InProceedings{suk_et_al:LIPIcs.SoCG.2025.76, author = {Suk, Andrew and White, Ethan Patrick}, title = {{A Note on the No-(d+2)-On-a-Sphere Problem}}, booktitle = {41st International Symposium on Computational Geometry (SoCG 2025)}, pages = {76:1--76:8}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-370-6}, ISSN = {1868-8969}, year = {2025}, volume = {332}, editor = {Aichholzer, Oswin and Wang, Haitao}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.76}, URN = {urn:nbn:de:0030-drops-232287}, doi = {10.4230/LIPIcs.SoCG.2025.76}, annote = {Keywords: General position, no-four-on-a-cirle, d-dimensional lattice cube} }
Feedback for Dagstuhl Publishing