Knowledge Graphs: A Guided Tour (Invited Paper)

Author Aidan Hogan

Thumbnail PDF


  • Filesize: 0.61 MB
  • 21 pages

Document Identifiers

Author Details

Aidan Hogan
  • DCC, University of Chile, Santiago, Chile
  • Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile


I wish to thank Camille Bourgaux, Ana Ozaki and Rafael Peñaloza for providing the idea for these lecture notes.

Cite AsGet BibTex

Aidan Hogan. Knowledge Graphs: A Guided Tour (Invited Paper). In International Research School in Artificial Intelligence in Bergen (AIB 2022). Open Access Series in Informatics (OASIcs), Volume 99, pp. 1:1-1:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Much has been written about knowledge graphs in the past years by authors coming from diverse communities. The goal of these lecture notes is to provide a guided tour to the secondary and tertiary literature concerning knowledge graphs where the reader can learn more about particular topics. In particular, we collate together brief summaries of relevant books, book collections, book chapters, journal articles and other publications that provide introductions, primers, surveys and perspectives regarding: knowledge graphs in general; graph data models and query languages; semantics in the form of graph schemata, ontologies and rules; graph theory, algorithms and analytics; graph learning, in the form of knowledge graph embeddings and graph neural networks; and the knowledge graph life-cycle, which incorporates works on constructing, refining and publishing knowledge graphs. Where available, we highlight and provide direct links to open access literature.

Subject Classification

ACM Subject Classification
  • Information systems → Graph-based database models
  • Information systems → Information integration
  • Computing methodologies → Artificial intelligence
  • knowledge graphs


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Charu C. Aggarwal and Haixun Wang, editors. Managing and Mining Graph Data, volume 40 of Advances in Database Systems. Springer, 2010. URL:
  2. Waqas Ali, Muhammad Saleem, Bin Yao, Aidan Hogan, and Axel-Cyrille Ngonga Ngomo. A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs. VLDB Journal, 2021. URL:
  3. Dean Allemang and James A. Hendler. Semantic Web for the Working Ontologist - Effective Modeling in RDFS and OWL, Second Edition. Morgan Kaufmann, 2011. URL:
  4. Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter, and Domagoj Vrgoc. Foundations of Modern Query Languages for Graph Databases. ACM Computing Surveys, 50(5):68:1-68:40, 2017. URL:
  5. Renzo Angles and Claudio Gutiérrez. Survey of graph database models. ACM Computing Surveys, 40(1):1:1-1:39, 2008. URL:
  6. Marcelo Arenas, Claudio Gutiérrez, and Juan F. Sequeda. Querying in the Age of Graph Databases and Knowledge Graphs. In Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava, editors, SIGMOD '21: International Conference on Management of Data, Virtual Event, China, June 20-25, 2021, pages 2821-2828. ACM, 2021. URL:
  7. Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduction to Description Logic. Cambridge University Press, Cambridge, United Kingdom, 2017. URL:
  8. Jesus Barrasa, Amy E. Hodler, and Jim Webber. Knowledge Graphs: Data in Context for Responsive Businesses. O'Reilly Media, 2021. Google Scholar
  9. Dave Bechberger and Josh Perryman. Graph Databases in Action. Manning, 2020. Google Scholar
  10. Luigi Bellomarini, Daniele Fakhoury, Georg Gottlob, and Emanuel Sallinger. Knowledge Graphs and Enterprise AI: The Promise of an Enabling Technology. In 35th IEEE International Conference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019, pages 26-37. IEEE Computer Society, 2019. URL:
  11. Michael K. Bergman. A Common Sense View of Knowledge Graphs. Adaptive Information, Adaptive Innovation, Adaptive Infrastructure Blog, July 2019. URL:
  12. Andreas Blumauer and Helmut Nagy. The Knowledge Graph Cook Book: Recipes That Work. monochrom, 2020. Google Scholar
  13. Kurt Bollacker, Patrick Tufts, Tomi Pierce, and Robert Cook. A platform for scalable, collaborative, structured information integration. In Ullas Nambiar and Zaiqing Nie, editors, Intl. Workshop on Information Integration on the Web (IIWeb’07), 2007. URL:
  14. Piero Andrea Bonatti, Stefan Decker, Axel Polleres, and Valentina Presutti. Knowledge Graphs: New Directions for Knowledge Representation on the Semantic Web (Dagstuhl Seminar 18371). Dagstuhl Reports, 8(9):29-111, 2018. URL:
  15. Angela Bonifati, George H. L. Fletcher, Hannes Voigt, and Nikolay Yakovets. Querying Graphs. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2018. URL:
  16. Spencer Chang. Scaling Knowledge Access and Retrieval at Airbnb. AirBnB Medium Blog, September 2018. URL:
  17. Giuseppe Cota, Marilena Daquino, and Gian Luca Pozzato, editors. Applications and Practices in Ontology Design, Extraction, and Reasoning, volume 49 of Studies on the Semantic Web. IOS Press, 2020. URL:
  18. Deepika Devarajan. Happy Birthday Watson Discovery. IBM Cloud Blog, December 2017. URL:
  19. Lisa Ehrlinger and Wolfram Wöß. Towards a Definition of Knowledge Graphs. In Michael Martin, Martí Cuquet, and Erwin Folmer, editors, Joint Proceedings of the Posters and Demos Track of the 12th International Conference on Semantic Systems - SEMANTiCS2016 and the 1st International Workshop on Semantic Change & Evolving Semantics (SuCCESS'16) co-located with the 12th International Conference on Semantic Systems (SEMANTiCS 2016), Leipzig, Germany, September 12-15, 2016, volume 1695 of CEUR Workshop Proceedings. Sun SITE Central Europe (CEUR), September 2016. URL:
  20. Dieter Fensel, Umutcan Simsek, Kevin Angele, Elwin Huaman, Elias Kärle, Oleksandra Panasiuk, Ioan Toma, Jürgen Umbrich, and Alexander Wahler. Knowledge Graphs: Methodology, Tools and Selected Use Cases. Springer, 2020. URL:
  21. George H. L. Fletcher, Jan Hidders, and Josep Lluís Larriba-Pey, editors. Graph Data Management: Fundamental Issues and Recent Developments. Data-Centric Systems and Applications. Springer, 2018. URL:
  22. José Emilio Labra Gayo, Eric Prud'hommeaux, Iovka Boneva, and Dimitris Kontokostas. Validating RDF Data. Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool Publishers, 2017. URL:
  23. Denise Gosnell and Matthias Broecheler. The Practitioner’s Guide to Graph Data. O'Reilly Media, 2020. Google Scholar
  24. Claudio Gutiérrez and Juan F. Sequeda. Knowledge graphs. Commun. ACM, 64(3):96-104, 2021. URL:
  25. Ferras Hamad, Isaac Liu, and Xian Xing Zhang. Food Discovery with Uber Eats: Building a Query Understanding Engine. Uber Engineering Blog, June 2018. URL:
  26. William L. Hamilton. Graph Representation Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2020. URL:
  27. William L. Hamilton, Rex Ying, and Jure Leskovec. Representation Learning on Graphs: Methods and Applications. IEEE Data Eng. Bull., 40(3):52-74, 2017. URL:
  28. Qi He, Bee-Chung Chen, and Deepak Agarwal. Building The LinkedIn Knowledge Graph. LinkedIn Blog, October 2016. URL:
  29. Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global Data Space (1st Edition), volume 1 of Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool, 2011. Google Scholar
  30. Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic Web Technologies. Chapman and Hall/CRC Press, 2010. Google Scholar
  31. Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, Edwin Lewis-Kelham, Gerard de Melo, and Gerhard Weikum. YAGO2: Exploring and querying world knowledge in time, space, context, and many languages. In Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and Ravi Kumar, editors, Proceedings of the 20th International Conference on World Wide Web, WWW 2011, Hyderabad, India, March 28 - April 1, 2011 (Companion Volume), pages 229-232. ACM Press, March 2011. Google Scholar
  32. Aidan Hogan. Knowledge Graphs: Research Directions. In Marco Manna and Andreas Pieris, editors, Reasoning Web. Declarative Artificial Intelligence - 16th International Summer School 2020, Oslo, Norway, June 24-26, 2020, Tutorial Lectures, volume 12258 of Lecture Notes in Computer Science, pages 223-253. Springer, 2020. Google Scholar
  33. Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d'Amato, Gerard de Melo, Claudio Gutiérrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan Sequeda, Steffen Staab, and Antoine Zimmermann. Knowledge Graphs. Synthesis Lectures on Data, Semantics, and Knowledge. Morgan & Claypool Publishers, 2021. URL:
  34. Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d'Amato, Gerard de Melo, Claudio Gutiérrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, and Antoine Zimmermann. Knowledge Graphs. ACM Computing Surveys, 54(4):71:1-71:37, 2021. URL:
  35. Valentina Janev, Damien Graux, Hajira Jabeen, and Emanuel Sallinger, editors. Knowledge Graphs and Big Data Processing, volume 12072 of Lecture Notes in Computer Science. Springer, 2020. URL:
  36. Daniel Janke and Steffen Staab. Storing and Querying Semantic Data in the Cloud. In Claudia d'Amato and Martin Theobald, editors, Reasoning Web. Learning, Uncertainty, Streaming, and Scalability - 14th International Summer School 2018, Esch-sur-Alzette, Luxembourg, September 22-26, 2018, Tutorial Lectures, volume 11078 of Lecture Notes in Computer Science, pages 173-222. Springer, 2018. URL:
  37. Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A Survey on Knowledge Graphs: Representation, Acquisition, and Applications. IEEE Transactions on Neural Networks and Learning Systems, pages 1-21, 2021. URL:
  38. C. Maria Keet. An Introduction to Ontology Engineering. College Publications, 2018. URL:
  39. Mayank Kejriwal. Domain-Specific Knowledge Graph Construction. Springer Briefs in Computer Science. Springer, 2019. URL:
  40. Mayank Kejriwal, Craig A. Knoblock, and Pedro Szekely, editors. Knowledge Graphs: Fundamentals, Techniques, and Applications. The MIT Press, 2021. Google Scholar
  41. Elisa F. Kendall and Deborah L. McGuinness. Ontology Engineering. Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool Publishers, 2019. URL:
  42. William L. Kocay and Donald L. Kreher. Graphs, algorithms and optimization. Chapman&Hall/CRC Press, 2005. Google Scholar
  43. Arun Krishnan. Making search easier: How Amazon’s Product Graph is helping customers find products more easily. Amazon Blog, August 2018. URL:
  44. Luís C. Lamb, Artur S. d'Avila Garcez, Marco Gori, Marcelo O. R. Prates, Pedro H. C. Avelar, and Moshe Y. Vardi. Graph Neural Networks Meet Neural-Symbolic Computing: A Survey and Perspective. In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages 4877-4884., 2020. URL:
  45. Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, and Christian Bizer. DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web Journal, 6(2):167-195, 2015. Google Scholar
  46. Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation embeddings for knowledge graph completion. In Blai Bonet and Sven Koenig, editors, Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA, pages 2181-2187. AAAI Press, August 2015. Google Scholar
  47. Yao Ma and Jiliang Tang. Deep Learning on Graphs. Cambridge University Press, 2021. URL:
  48. Albert Meroño-Peñuela, Pasquale Lisena, and Carlos Martinez-Ortiz. Web Data APIs for Knowledge Graphs: Easing Access to Semantic Data for Application Developers. Synthesis Lectures on Data, Semantics, and Knowledge. Morgan & Claypool Publishers, 2021. URL:
  49. Mark Needham and Amy E. Hodler. Graph Algorithms. O'Reilly Media, 2019. Google Scholar
  50. Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A Review of Relational Machine Learning for Knowledge Graphs. Proceedings of the IEEE, 104(1):11-33, 2016. Google Scholar
  51. Natasha F. Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, and Jamie Taylor. Industry-scale Knowledge Graphs: Lessons and Challenges. ACM Queue, 17(2):20, 2019. Google Scholar
  52. Jeff Z. Pan, Guido Vetere, José Manuél Gómez-Pérez, and Honghan Wu, editors. Exploiting Linked Data and Knowledge Graphs in Large Organisations. Springer, 2017. URL:
  53. Heiko Paulheim. Knowledge graph refinement: A survey of approaches and evaluation methods. Semantic Web Journal, 8(3):489-508, 2017. URL:
  54. R. J. Pittman, Amit Srivastava, Sanjika Hewavitharana, Ajinkya Kale, and Saab Mansour. Cracking the Code on Conversational Commerce. eBay Blog, April 2017. URL:
  55. Jay Pujara, Hui Miao, Lise Getoor, and William W. Cohen. Knowledge graph identification. In Harith Alani, Lalana Kagal, Achille Fokoue, Paul T. Groth, , Josian Xavier Parreira, Lora Aroyo, Natasha Fridman Noy, Christopher A. Welty, and Krzysztof Janowicz, editors, The Semantic Web - ISWC 2013 - 12th International Semantic Web Conference, Sydney, NSW, Australia, October 21-25, 2013, Proceedings, Part I, volume 8218 of Lecture Notes in Computer Science, pages 542-557. Springer, October 2013. URL:
  56. Guilin Qi, Huajun Chen, Kang Liu, Haofen Wang, Qiu Ji, and Tianxing Wu. Knowledge Graph. Springer, 2020. (to appear). Google Scholar
  57. Guilin Qi, Huajun Chen, Kang Liu, Haofen Wang, Qiu Ji, and Tianxing Wu. Knowledge Graph. Springer Singapore, 2022. Google Scholar
  58. Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases, 2nd Edition. O'Reilly Media, 2015. Google Scholar
  59. Sebastian Rudolph. Foundations of Description Logics. In Axel Polleres, Claudia d'Amato, Marcelo Arenas, Siegfried Handschuh, Paula Kroner, Sascha Ossowski, and Peter F. Patel-Schneider, editors, Reasoning Web. Semantic Technologies for the Web of Data - 7th International Summer School 2011, Galway, Ireland, August 23-27, 2011, Tutorial Lectures, volume 6848 of Lecture Notes in Computer Science, pages 76-136. Springer, August 2011. Google Scholar
  60. Edward W. Schneider. Course Modularization Applied: The Interface System and Its Implications For Sequence Control and Data Analysis. In Association for the Development of Instructional Systems (ADIS), Chicago, Illinois, April 1972, 1973. Google Scholar
  61. Juan Sequeda and Ora Lassila. Designing and Building Enterprise Knowledge Graphs. Synthesis Lectures on Data, Semantics, and Knowledge. Morgan & Claypool Publishers, 2021. URL:
  62. Stephan Seufert, Patrick Ernst, Srikanta J. Bedathur, Sarath Kumar Kondreddi, Klaus Berberich, and Gerhard Weikum. Instant Espresso: Interactive Analysis of Relationships in Knowledge Graphs. In Jacqueline Bourdeau, Jim Hendler, Roger Nkambou, Ian Horrocks, and Ben Y. Zhao, editors, Proceedings of the 25th International Conference on World Wide Web, WWW 2016, Montreal, Canada, April 11-15, 2016, Companion Volume, pages 251-254. ACM Press, April 2016. Google Scholar
  63. Saurabh Shrivastava. Bring rich knowledge of people, places, things and local businesses to your apps. Bing Blogs, July 2017. URL:
  64. Umutcan Simsek, Kevin Angele, Elias Kärle, Juliette Opdenplatz, Dennis Sommer, Jürgen Umbrich, and Dieter Fensel. Knowledge Graph Lifecycle: Building and Maintaining Knowledge Graphs. In David Chaves-Fraga, Anastasia Dimou, Pieter Heyvaert, Freddy Priyatna, and Juan F. Sequeda, editors, Proceedings of the 2nd International Workshop on Knowledge Graph Construction co-located with 18th Extended Semantic Web Conference (ESWC 2021), Online, June 6, 2021, volume 2873 of CEUR Workshop Proceedings., 2021. URL:
  65. Amit Singhal. Introducing the Knowledge Graph: things, not strings. Google Blog, May 2012. URL:
  66. Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, Enrico Motta, and Aldo Gangemi, editors. Ontology Engineering in a Networked World. Springer, 2012. URL:
  67. Ilaria Tiddi, Freddy Lécué, and Pascal Hitzler, editors. Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges, volume 47 of Studies on the Semantic Web. IOS Press, 2020. URL:
  68. Denny Vrandečić and Markus Krötzsch. Wikidata: A Free Collaborative Knowledgebase. Communications of the ACM, 57(10):78-85, 2014. Google Scholar
  69. Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge Graph Embedding: A Survey of Approaches and Applications. IEEE Transactions on Knowledge and Data Engineering, 29(12):2724-2743, December 2017. URL:
  70. Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge Graph Embedding by Translating on Hyperplanes. In Carla E. Brodley and Peter Stone, editors, Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada, pages 1112-1119. AAAI Press, July 2014. Google Scholar
  71. Gerhard Weikum. Knowledge Graphs 2021: A Data Odyssey. Proc. VLDB Endow., 14(12):3233-3238, 2021. URL:
  72. Gerhard Weikum, Xin Luna Dong, Simon Razniewski, and Fabian M. Suchanek. Machine Knowledge: Creation and Curation of Comprehensive Knowledge Bases. Found. Trends Databases, 10(2-4):108-490, 2021. URL:
  73. Peter T. Wood. Query languages for graph databases. SIGMOD Rec., 41(1):50-60, 2012. URL:
  74. Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Networks Learn. Syst., 32(1):4-24, 2021. URL:
  75. Marcin Wylot, Manfred Hauswirth, Philippe Cudré-Mauroux, and Sherif Sakr. RDF Data Storage and Query Processing Schemes: A Survey. ACM Computing Surveys, 51(4):84:1-84:36, 2018. URL:
  76. Da Yan, Yuanyuan Tian, and James Cheng. Systems for Big Graph Analytics. Springer Briefs in Computer Science. Springer, 2017. URL:
  77. Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo Pietrobon, Jens Lehmann, and Sören Auer. Quality assessment for Linked Data: A Survey. Semantic Web Journal, 7(1):63-93, 2016. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail