A New Sequential Approach to Periodic Vehicle Scheduling and Timetabling

Authors Paul Bouman , Alexander Schiewe , Philine Schiewe



PDF
Thumbnail PDF

File

OASIcs.ATMOS.2020.6.pdf
  • Filesize: 0.53 MB
  • 16 pages

Document Identifiers

Author Details

Paul Bouman
  • Erasmus School of Economics, Erasmus University Rotterdam, The Netherlands
Alexander Schiewe
  • TU Kaiserslautern, Germany
Philine Schiewe
  • TU Kaiserslautern, Germany

Cite AsGet BibTex

Paul Bouman, Alexander Schiewe, and Philine Schiewe. A New Sequential Approach to Periodic Vehicle Scheduling and Timetabling. In 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020). Open Access Series in Informatics (OASIcs), Volume 85, pp. 6:1-6:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/OASIcs.ATMOS.2020.6

Abstract

When evaluating the operational costs of a public transport system, the most important factor is the number of vehicles needed for operation. In contrast to the canonical sequential approach of first fixing a timetable and then adding a vehicle schedule, we consider a sequential approach where a vehicle schedule is determined for a given line plan and only afterwards a timetable is fixed. We compare this new sequential approach to a model that integrates both steps. To represent various operational requirements, we consider multiple possibilities to restrict the vehicle circulations to be short, as this can provide operational benefits. The sequential approach can efficiently determine public transport plans with a low number of vehicles. This is evaluated theoretically and empirically demonstrated for two close-to real-world instances.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Discrete mathematics
  • Applied computing → Transportation
Keywords
  • Vehicle Scheduling
  • Timetabling
  • Integrated Planning

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. R. Borndörfer, M. Grötschel, and M. Pfetsch. A column-generation approach to line planning in public transport. Transportation Science, 41(1):123-132, 2007. Google Scholar
  2. R. Borndörfer, H. Hoppmann, and M. Karbstein. Passenger routing for periodic timetable optimization. Public Transport, 9(1-2):115-135, 2017. Google Scholar
  3. R. Borndörfer, M. Karbstein, C. Liebchen, and N. Lindner. A Simple Way to Compute the Number of Vehicles That Are Required to Operate a Periodic Timetable. In Ralf Borndörfer and Sabine Storandt, editors, 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018), volume 65 of OpenAccess Series in Informatics (OASIcs), pages 16:1-16:15, Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/OASIcs.ATMOS.2018.16.
  4. S. Bull, J. Larsen, R. Lusby, and N. Rezanova. Optimising the travel time of a line plan. 4OR, October 2018. URL: https://doi.org/10.1007/s10288-018-0391-5.
  5. S. Bunte and N. Kliewer. An overview on vehicle scheduling models. Public Transport, 1(4):299-317, 2009. Google Scholar
  6. M. Claessens, N. van Dijk, and P. Zwaneveld. Cost optimal allocation of rail passenger lines. European Journal of Operational Research, 110(3):474-489, 1998. Google Scholar
  7. G. Desaulniers and M. Hickman. Public transit. Handbooks in operations research and management science, 14:69-127, 2007. Google Scholar
  8. M. Goerigk and A. Schöbel. Improving the modulo simplex algorithm for large-scale periodic timetabling. Computers & Operations Research, 40(5):1363-1370, 2013. Google Scholar
  9. Gurobi Optimizer. http://www.gurobi.com/, 2018. Gurobi Optimizer Version 8.1.1, Houston, Texas: Gurobi Optimization, Inc. Google Scholar
  10. D. Huisman, L. Kroon, R. Lentink, and M. Vromans. Operations research in passenger railway transportation. Statistica Neerlandica, 59(4):467-497, 2005. Google Scholar
  11. K. Li, H. Huang, and P. Schonfeld. Metro Timetabling for Time-Varying Passenger Demand and Congestion at Stations. Journal of Advanced Transportation, 2018, 2018. Google Scholar
  12. C. Liebchen. Linien-, Fahrplan-, Umlauf-und Dienstplanoptimierung: Wie weit können diese bereits integriert werden? In Heureka'08, 2008. Google Scholar
  13. C. Liebchen and R. Möhring. The modeling power of the periodic event scheduling problem: railway timetables—and beyond. In Algorithmic methods for railway optimization, pages 3-40. Springer, 2007. Google Scholar
  14. R. Lusby, J. Larsen, M. Ehrgott, and D. Ryan. Railway track allocation: models and methods. OR spectrum, 33(4):843-883, 2011. Google Scholar
  15. G. Maróti. Operations research models for railway rolling stock planning. PhD thesis, Eindhoven University of Technology, 2006. Google Scholar
  16. M. Michaelis and A. Schöbel. Integrating Line Planning, Timetabling, and Vehicle Scheduling: A customer-oriented approach. Public Transport, 1(3):211-232, 2009. Google Scholar
  17. D. Michail, J. Kinable, B. Naveh, and J. V. Sichi. Jgrapht—a java library for graph data structures and algorithms. ACM Trans. Math. Softw., 46(2), May 2020. Google Scholar
  18. K. Nachtigall. Periodic Network Optimization and Fixed Interval Timetables. PhD thesis, University of Hildesheim, 1998. Google Scholar
  19. J. Pätzold, A. Schiewe, P. Schiewe, and A. Schöbel. Look-Ahead Approaches for Integrated Planning in Public Transportation. In Gianlorenzo D'Angelo and Twan Dollevoet, editors, 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017), volume 59 of OpenAccess Series in Informatics (OASIcs), pages 17:1-17:16, Dagstuhl, Germany, 2017. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/OASIcs.ATMOS.2017.17.
  20. J. Pätzold and A. Schöbel. A Matching Approach for Periodic Timetabling. In Marc Goerigk and Renato Werneck, editors, 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016), volume 54 of OpenAccess Series in Informatics (OASIcs), pages 1:1-1:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/OASIcs.ATMOS.2016.1.
  21. M. Reuther and T. Schlechte. Optimization of Rolling Stock Rotations. In Handbook of Optimization in the Railway Industry, pages 213-241. Springer, 2018. Google Scholar
  22. A. Schiewe, S. Albert, J. Pätzold, P. Schiewe, A. Schöbel, and J. Schulz. LinTim: An integrated environment for mathematical public transport optimization. Documentation. Technical Report 2018-08, Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Georg-August-Universität Göttingen, 2018. URL: http://num.math.uni-goettingen.de/preprints/files/2018-8.pdf.
  23. A. Schiewe, S. Albert, J. Pätzold, P. Schiewe, and A. Schöbel. LinTim - Integrated Optimization in Public Transportation. Homepage. http://lintim.math.uni-goettingen.de/, 2018.
  24. P. Schiewe. Integrated Optimization in Public Transport Planning, volume 160 of Optimization and Its Applications. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-46270-3.
  25. A. Schöbel. Line planning in public transportation: models and methods. OR spectrum, 34(3):491-510, 2012. Google Scholar
  26. A. Schöbel. An eigenmodel for iterative line planning, timetabling and vehicle scheduling in public transportation. Transportation Research Part C: Emerging Technologies, 74:348-365, 2017. Google Scholar
  27. A. Schöbel and S. Scholl. Line planning with minimal transfers. In 5th Workshop on Algorithmic Methods and Models for Optimization of Railways, number 06901 in Dagstuhl Seminar Proceedings, 2006. Google Scholar
  28. P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems. SIAM Journal on Discrete Mathematics, 2(4):550-581, 1989. Google Scholar
  29. J. Szwarcfiter and P. Lauer. Finding the elementary cycles of a directed graph in O (n+ m) per cycle. University of Newcastle upon Tyne, 1974. Google Scholar
  30. R. N. van Lieshout. Integrated periodic timetabling and vehicle circulation scheduling. Preprint, August 2019. URL: http://hdl.handle.net/1765/118655.
  31. R. N. van Lieshout and P.C. Bouman. Vehicle Scheduling Based on a Line Plan. In Ralf Borndörfer and Sabine Storandt, editors, 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018), volume 65 of OpenAccess Series in Informatics (OASIcs), pages 15:1-15:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/OASIcs.ATMOS.2018.15.