The Edge Investment Problem: Upgrading Transit Line Segments with Multiple Investing Parties

Authors Rowan Hoogervorst , Evelien van der Hurk , Philine Schiewe , Anita Schöbel , Reena Urban



PDF
Thumbnail PDF

File

OASIcs.ATMOS.2022.9.pdf
  • Filesize: 4.62 MB
  • 19 pages

Document Identifiers

Author Details

Rowan Hoogervorst
  • DTU Management, Technical University of Denmark, Kongens Lyngby, Denmark
Evelien van der Hurk
  • DTU Management, Technical University of Denmark, Kongens Lyngby, Denmark
Philine Schiewe
  • Department of Mathematics, Technische Universität Kaiserslautern, Germany
Anita Schöbel
  • Department of Mathematics, Technische Universität Kaiserslautern, Germany
  • Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM, Kaiserslautern, Germany
Reena Urban
  • Department of Mathematics, Technische Universität Kaiserslautern, Germany

Acknowledgements

We would like to thank the Region H [0205-00005B] and Movia for their efforts to provide insight into the planning process of the BRT system and for the provision of data.

Cite AsGet BibTex

Rowan Hoogervorst, Evelien van der Hurk, Philine Schiewe, Anita Schöbel, and Reena Urban. The Edge Investment Problem: Upgrading Transit Line Segments with Multiple Investing Parties. In 22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022). Open Access Series in Informatics (OASIcs), Volume 106, pp. 9:1-9:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/OASIcs.ATMOS.2022.9

Abstract

Bus Rapid Transit (BRT) systems can provide a fast and reliable service to passengers at lower costs compared to tram, metro and train systems. Therefore, they can be of great value to attract more passengers to use public transport, which is vital in reaching the Paris Agreement Targets. However, the main advantage of BRT systems, namely their flexible implementation, also leads to the risk that the system is only implemented partially to save costs. This paper focuses therefore on the Edge Investment Problem: Which edges (segments) of a bus line should be upgraded to full-level BRT? Motivated by the construction of a new BRT line around Copenhagen, we consider a setting in which multiple parties are responsible for different segments of the line. Each party has a limited budget and can adjust its investments according to the benefits provided to its passengers. We suggest two ways to determine the number of newly attracted passengers, prove that the corresponding problems are NP-hard and identify special cases that can be solved in polynomial time. In addition, problem relaxations are presented that yield dual bounds. Moreover, we perform an extensive numerical comparison in which we evaluate the extent to which these two ways of modeling demand impact the computational performance and the choice of edges to be upgraded.

Subject Classification

ACM Subject Classification
  • Applied computing → Transportation
  • Mathematics of computing → Combinatorial optimization
  • Applied computing → Operations research
Keywords
  • Network Design
  • Public Transport
  • Bus Rapid Transit
  • Modeling

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. M. Baldomero-Naranjo, J. Kalcsics, A. Marín, and A. M. Rodríguez-Chía. Upgrading edges in the maximal covering location problem. European Journal of Operational Research, 303(1):14-36, 2022. URL: https://doi.org/10.1016/j.ejor.2022.02.001.
  2. R. Camporeale, L. Caggiani, and M. Ottomanelli. Modeling horizontal and vertical equity in the public transport design problem: A case study. Transportation Research Part A: Policy and Practice, 125:184-206, July 2019. URL: https://doi.org/10.1016/j.tra.2018.04.006.
  3. L. Deng, W. Gao, W. Zhou, and T. Lai. Optimal Design of Feeder-bus Network Related to Urban Rail Line based on Transfer System. Procedia - Social and Behavioral Sciences, 96:2383-2394, November 2013. URL: https://doi.org/10.1016/j.sbspro.2013.08.267.
  4. M. Dom. Algorithmic Aspects of the Consecutive-Ones Property, 2009. Google Scholar
  5. M. Dom, J. Guo, R. Niedermeier, and S. Wernicke. Red-blue covering problems and the consecutive ones property. Journal of Discrete Algorithms, 6(3):393-407, September 2008. URL: https://doi.org/10.1016/j.jda.2007.11.002.
  6. N. González-Blanco, A. J. Lozano, V. Marianov, and J. A. Mesa. An Integrated Model for Rapid and Slow Transit Network Design. In Matthias Müller-Hannemann and Federico Perea, editors, 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021), volume 96 of Open Access Series in Informatics (OASIcs), pages 18:1-18:6, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/OASIcs.ATMOS.2021.18.
  7. S. O. Krumke, M. V. Marathe, H. Noltemeier, R. Ravi, and S. S. Ravi. Approximation Algorithms for Certain Network Improvement Problems. Journal of Combinatorial Optimization, 2(3):257-288, September 1998. URL: https://doi.org/10.1023/A:1009798010579.
  8. G. Laporte and J. A. Mesa. The Design of Rapid Transit Networks. In Gilbert Laporte, Stefan Nickel, and Francisco Saldanha da Gama, editors, Location Science, pages 687-703. Springer International Publishing, Cham, 2019. URL: https://doi.org/10.1007/978-3-030-32177-2_24.
  9. G. Laporte, J. A. Mesa, and F. A. Ortega. Optimization methods for the planning of rapid transit systems. European Journal of Operational Research, 122(1):1-10, April 2000. URL: https://doi.org/10.1016/S0377-2217(99)00016-8.
  10. J. Liang, J. Wu, Z. Gao, H. Sun, X. Yang, and H. K. Lo. Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework. Transportation Research Part B: Methodological, 126:115-138, August 2019. URL: https://doi.org/10.1016/j.trb.2019.05.011.
  11. Y. Lin and K. Mouratidis. Best upgrade plans for single and multiple source-destination pairs. GeoInformatica, 19(2):365-404, April 2015. URL: https://doi.org/10.1007/s10707-014-0219-1.
  12. Movia. BRT på Ring 4 - Mulighedsstudie af BRT mellem Ishøj og Lyngby. Technical report, Movia, 2020. In Danish. URL: https://www.moviatrafik.dk/media/hgzhlcox/brt-400s-i-ring-4-ishoej-lyngby-komprimeret-final-a.pdf.
  13. L. Murawski and R. L. Church. Improving accessibility to rural health services: The maximal covering network improvement problem. Socio-Economic Planning Sciences, 43(2):102-110, June 2009. URL: https://doi.org/10.1016/j.seps.2008.02.012.
  14. J.-P. Rodrigue. The geography of transport systems. Routledge, 2020. URL: https://doi.org/10.4324/9780429346323.
  15. N. Ruf and A. Schöbel. Set covering with almost consecutive ones property. Discrete Optimization, 1(2):215-228, November 2004. URL: https://doi.org/10.1016/j.disopt.2004.07.002.
  16. P. Schiewe and A. Schöbel. Integrated optimization of sequential processes: General analysis and application to public transport. EURO Journal on Transportation and Logistics, 11:100073, 2022. URL: https://doi.org/10.1016/j.ejtl.2022.100073.
  17. A. Schöbel and R. Urban. The cheapest ticket problem in public transport. Transportation Science, 2022. URL: https://doi.org/10.1287/trsc.2022.1138.
  18. A. Schöbel. Locating Stops Along Bus or Railway Lines—A Bicriteria Problem. Annals of Operations Research, 136(1):211-227, April 2005. URL: https://doi.org/10.1007/s10479-005-2046-0.
  19. Vejdirektoratet, Rambøll, and MoeTetraplan. BRT i Ring 4-korridoren - forberedende analyse fra Ishøj station til kommunegrænsen til Lyngby-Taarbæk kommune. Technical report, Vejdirektoratet, 2022. In Danish. URL: https://dagsordener.gladsaxe.dk/vis/pdf/bilag/5398c71e-b824-48ac-9058-6e0fe75a2a5c.
  20. H. Wang and X. Zhang. Game theoretical transportation network design among multiple regions. Annals of Operations Research, 249(1):97-117, February 2017. URL: https://doi.org/10.1007/s10479-014-1700-9.
  21. L. A. Wolsey and G. L. Nemhauser. Integer and combinatorial optimization, volume 55. John Wiley & Sons, 1999. Google Scholar
  22. J. Z. Zhang, X. G. Yang, and M. C. Cai. A Network Improvement Problem Under Different Norms. Computational Optimization and Applications, 27(3):305-319, March 2004. URL: https://doi.org/10.1023/B:COAP.0000013061.17529.79.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail