A Bi-Objective Optimization Model for Fare Structure Design in Public Transport

Authors Philine Schiewe , Anita Schöbel , Reena Urban



PDF
Thumbnail PDF

File

OASIcs.ATMOS.2024.15.pdf
  • Filesize: 2.16 MB
  • 19 pages

Document Identifiers

Author Details

Philine Schiewe
  • Department of Mathematics and Systems Analysis, Aalto University, Finland
Anita Schöbel
  • Department of Mathematics, University of Kaiserslautern-Landau (RPTU), Germany
  • Fraunhofer Institute of Industrial Mathematics ITWM, Kaiserslautern, Germany
Reena Urban
  • Department of Mathematics, University of Kaiserslautern-Landau (RPTU), Germany

Cite AsGet BibTex

Philine Schiewe, Anita Schöbel, and Reena Urban. A Bi-Objective Optimization Model for Fare Structure Design in Public Transport. In 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs), Volume 123, pp. 15:1-15:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/OASIcs.ATMOS.2024.15

Abstract

Fare planning in public transport is important from the view of passengers as well as of operators. In this paper, we propose a bi-objective model that maximizes the revenue as well as the number of attracted passengers. The potential demand per origin-destination pair is divided into demand groups that have their own willingness how much to pay for using public transport, i.e., a demand group is only attracted as public transport passengers if the fare does not exceed their willingness to pay. We study the bi-objective problem for flat and distance tariffs and develop specialized algorithms to compute the Pareto front in quasilinear or cubic time, respectively. Through computational experiments on structured data sets we evaluate the running time of the developed algorithms in practice and analyze the number of non-dominated points and their respective efficient solutions.

Subject Classification

ACM Subject Classification
  • Applied computing → Transportation
Keywords
  • Public transport
  • fare structure design
  • modeling
  • bi-objective
  • algorithm

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. L. Babel and H. Kellerer. Design of tariff zones in public transportation networks: theoretical results and heuristics. Mathematical Methods of Operations Research, 58(3):359-374, December 2003. URL: https://doi.org/10.1007/s001860300311.
  2. P. Bloomfield and W. L. Steiger. Least Absolute Deviation. Theory, Applications and Algorithms. Progress in Probability. Birkhäuser Boston, MA, 1983. Google Scholar
  3. R. Borndörfer, M. Karbstein, and M. E. Pfetsch. Models for fare planning in public transport. Discrete Applied Mathematics, 160(18):2591-2605, December 2012. URL: https://doi.org/10.1016/j.dam.2012.02.027.
  4. J.-F. Bérubé, M. Gendreau, and J.-Y. Potvin. An exact ε-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits. European Journal of Operational Research, 194(1):39-50, April 2009. URL: https://doi.org/10.1016/j.ejor.2007.12.014.
  5. J. Camargo Pérez, M. H. Carrillo, and J. R. Montoya-Torres. Multi-criteria approaches for urban passenger transport systems: a literature review. Annals of Operations Research, 226(1):69-87, March 2015. URL: https://doi.org/10.1007/s10479-014-1681-8.
  6. A. Chin, A. Lai, and J. Y. J. Chow. Nonadditive Public Transit Fare Pricing Under Congestion with Policy Lessons from a Case Study in Toronto, Ontario, Canada. Transportation Research Record, 2544(1):28-37, January 2016. URL: https://doi.org/10.3141/2544-04.
  7. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press, 3. edition, 2009. Google Scholar
  8. R. Cupec, R. Grbić, K. Sabo, and R. Scitovski. Three points method for searching the best least absolute deviations plane. Applied Mathematics and Computation, 215(3):983-994, 2009. Google Scholar
  9. M. Czerliński and M.S. Bańka. Ticket tariffs modelling in urban and regional public transport. Archives of Transport, 57(1):103-117, 2021. URL: https://doi.org/10.5604/01.3001.0014.8041.
  10. M. S. Daskin, Joseph L. Schofer, and A. E. Haghani. A quadratic programming model for designing and evaluating distance-based and zone fares for urban transit. Transportation Research Part B: Methodological, 22(1):25-44, 1988. URL: https://doi.org/10.1016/0191-2615(88)90032-X.
  11. M. Ehrgott. Multicriteria optimization, volume 491. Springer Science & Business Media, 2005. Google Scholar
  12. D. Fleishman, N. Shaw, A. Joshi, R. Freeze, and R. Oram. Fare Policies, Structures, and Technologies. Number 10 in TCRP Resport. Transportation Research Board, 1996. Google Scholar
  13. D. Gattuso and G. Musolino. A Simulation Approach of Fare Integration in Regional Transit Services. In Frank Geraets, Leo Kroon, Anita Schoebel, Dorothea Wagner, and Christos D. Zaroliagis, editors, Algorithmic Methods for Railway Optimization, Lecture Notes in Computer Science, pages 200-218, Berlin, Heidelberg, 2007. Springer. URL: https://doi.org/10.1007/978-3-540-74247-0_10.
  14. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL: https://www.gurobi.com.
  15. H. W. Hamacher and A. Schöbel. On Fair Zone Designs in Public Transportation. In Joachim R. Daduna, Isabel Branco, and José M. Pinto Paixão, editors, Computer-Aided Transit Scheduling, Lecture Notes in Economics and Mathematical Systems, pages 8-22, Berlin, Heidelberg, 1995. Springer. URL: https://doi.org/10.1007/978-3-642-57762-8_2.
  16. H. W. Hamacher and A. Schöbel. Design of Zone Tariff Systems in Public Transportation. Operations Research, 52(6):897-908, December 2004. URL: https://doi.org/10.1287/opre.1040.0120.
  17. R. Hoshino and J. Beairsto. Optimal pricing for distance-based transit fares. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018. URL: https://doi.org/10.1609/aaai.v32i1.11413.
  18. S. Maadi and J.-D. Schmöcker. Route choice effects of changes from a zonal to a distance-based fare structure in a regional public transport network. Public Transport, 12(3):535-555, October 2020. URL: https://doi.org/10.1007/s12469-020-00239-9.
  19. B. Otto and N. Boysen. Zone-based tariff design in public transportation networks. Networks, 69(4):349-366, 2017. URL: https://doi.org/10.1002/net.21731.
  20. P. Schiewe, A. Schöbel, S. Jäger, S. Albert, C. Biedinger, C. Dahlheimer, V. Grafe, S. Roth, A. Schiewe, F. Spühler, M. Stinzendörfer, and R. Urban. LinTim - integrated optimization in public transportation. Homepage. URL: https://www.lintim.net/.
  21. P. Schiewe, A. Schöbel, S. Jäger, S. Albert, C. Biedinger, C. Dahlheimer, V. Grafe, S. Roth, A. Schiewe, F. Spühler, M. Stinzendörfer, and R. Urban. LinTim: An integrated environment for mathematical public transport optimization. Documentation for version 2024.08. Technical report, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, 2024. URL: https://nbn-resolving.org/urn:nbn:de:hbz:386-kluedo-83557.
  22. J.-D. Schmöcker, A. Fonzone, S. Moadi, and F. Belgiawan. Determining Fare Structures: Evidence and Recommendations from a Qualitative Survey among Transport Authorities. European Metropolitan Transport Authorities (EMTA), October 2016. URL: https://doi.org/10.13140/RG.2.2.17458.20162.
  23. A. Schöbel. Locating Lines and Hyperplanes - Theory and Algorithms. Number 25 in Applied Optimization Series. Kluwer, 1999. Google Scholar
  24. A. Schöbel. Locating dimensional facilities in a continuous space. In G. Laporte, S. Nickel, and F. Saldanha da Gama, editors, Location Science, chapter 7, pages 143-184. Springer, 2020. Google Scholar
  25. A. Schöbel and R. Urban. The cheapest ticket problem in public transport. Transportation Science, 56(6):1432-1451, 2022. URL: https://doi.org/10.1287/trsc.2022.1138.
  26. D. Yook and K. Heaslip. Determining Appropriate Fare Levels for Distance-Based Fare Structure: Considering Users’ Behaviors in a Time-Expanded Network. Transportation Research Record, 2415(1):127-135, January 2014. URL: https://doi.org/10.3141/2415-14.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail