A Review of Fault Diagnosis Techniques Applied to Aircraft Air Data Sensors

Authors Lucas Lima Lopes , Louise Travé-Massuyès , Carine Jauberthie, Guillaume Alcalay



PDF
Thumbnail PDF

File

OASIcs.DX.2024.3.pdf
  • Filesize: 0.71 MB
  • 20 pages

Document Identifiers

Author Details

Lucas Lima Lopes
  • Airbus Operations S.A.S, Toulouse, France
  • LAAS-CNRS, Toulouse, France
Louise Travé-Massuyès
  • LAAS-CNRS, Université de Toulouse, CNRS, France
Carine Jauberthie
  • LAAS-CNRS, Université de Toulouse, UPS, France
Guillaume Alcalay
  • Airbus Operations S.A.S, Toulouse, France

Cite As Get BibTex

Lucas Lima Lopes, Louise Travé-Massuyès, Carine Jauberthie, and Guillaume Alcalay. A Review of Fault Diagnosis Techniques Applied to Aircraft Air Data Sensors. In 35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024). Open Access Series in Informatics (OASIcs), Volume 125, pp. 3:1-3:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/OASIcs.DX.2024.3

Abstract

Air data sensors provide essential measurements to ensure the availability of autopilot and to maintain aircraft performance, flight envelope protection and optimal aerodynamic surfaces control laws. The importance of these sensors imply the existence of embedded fault tolerance features, mainly represented by hardware redundancy. The latter is prone to fail in case of common fault of multiple sensors, especially if the faults are coherent and simultaneous. Increasing the robustness of fault detection and isolation (FDI) techniques for air data sensors to the aforementioned conditions is essential for the development of more autonomous aircraft, reducing crew workload and guaranteeing flight protections under adverse conditions. This paper reviews recent works on Air Data System (ADS) FDI, assessing proposed model, data and signal-driven approaches. We finally argue in favor of data-driven and hybrid approaches for the development of virtual sensors and semi-supervised anomaly detectors, offering an overview of ways forward.

Subject Classification

ACM Subject Classification
  • Applied computing → Avionics
Keywords
  • air data
  • FDI
  • aeronautics
  • review
  • survey
  • diagnostics
  • fault

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Alireza Abbaspour, Payam Aboutalebi, K. Yen, and A. Sargolzaei. Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: Application in UAV. ISA transactions, 67:317-329, 2017. URL: https://doi.org/10.1016/j.isatra.2016.11.005.
  2. 'AIRBUS'. Lightning strikes. https://safetyfirst.airbus.com/lightning-strikes/. Accessed: 2024-09-27.
  3. Guillaume Alcalay, Cédric Seren, Georges Hardier, Martin Delporte, and Philippe Goupil. Development of virtual sensors to estimate critical aircraft flight parameters. IFAC-PapersOnLine, 50(1):14174-14179, 2017. Number: 1 Publisher: Elsevier. Google Scholar
  4. Guillaume Alcalay, Cédric Seren, Georges Hardier, Martin Delporte, and Philippe Goupil. An adaptive extended kalman filter for monitoring and estimating key aircraft flight parameters. IFAC-PapersOnLine, 51(24):620-627, 2018. Number: 24 Publisher: Elsevier. Google Scholar
  5. Francesco Amato, Carlo Cosentino, Massimiliano Mattei, and Gaetano Paviglianiti. A direct/functional redundancy scheme for fault detection and isolation on an aircraft. Aerospace Science and Technology, 10(4):338-345, 2006. Publisher: Elsevier. Google Scholar
  6. John Anderson. EBOOK: Fundamentals of Aerodynamics (SI units). McGraw hill, 2011. Google Scholar
  7. Marco Ariola, F Corraro, Massimiliano Mattei, I Notaro, and Adolfo Sollazzo. An SFDI observer-based scheme for a general aviation aircraft. In 2013 Conference on Control and Fault-Tolerant Systems (SysTol), pages 152-157. IEEE, 2013. Google Scholar
  8. Fabio Balzano, Mario L Fravolini, Marcello R Napolitano, Stéphane d’Urso, Michele Crispoltoni, and Giuseppe del Core. Air data sensor fault detection with an augmented floating limiter. International Journal of Aerospace Engineering, 2018(1):1072056, 2018. Publisher: Wiley Online Library. Google Scholar
  9. Joelle Barthe. Unreliable speed. https://safetyfirst.airbus.com/app/themes/mh_newsdesk/documents/archives/unreliable-speed.pdf. Accessed: 2024-09-27.
  10. Denis Berdjag, Jerome Cieslak, and Ali Zolghadri. Fault detection and isolation of aircraft air data/inertial system. EUCASS Proceedings Series-Advances in AeroSpace Sciences, 6:317-332, 2013. Google Scholar
  11. Marcello Bonfè, P. Castaldi, W. Geri, and S. Simani. Fault detection and isolation for on‐board sensors of a general aviation aircraft. International Journal of Adaptive Control and Signal Processing, 20, 2006. URL: https://doi.org/10.1002/ACS.906.
  12. Pierre Boudier, Anthony Fillion, Serge Gratton, Selime Gürol, and Sixin Zhang. Data Assimilation Networks, May 2023. arXiv:2010.09694 [cs, eess]. URL: http://arxiv.org/abs/2010.09694.
  13. Fikret Caliskan and Chingiz M Hajiyev. Innovation sequence application to aircraft sensor fault detection: comparison of checking covariance matrix algorithms. ISA transactions, 39(1):47-56, 2000. Publisher: Elsevier. Google Scholar
  14. N. Cartocci, G. Costante, M. Napolitano, P. Valigi, F. Crocetti, and M. L. Fravolini. PCA Methods and Evidence Based Filtering for Robust Aircraft Sensor Fault Diagnosis. 2020 28th Mediterranean Conference on Control and Automation (MED), pages 550-555, 2020. URL: https://doi.org/10.1109/MED48518.2020.9182973.
  15. N. Cartocci, M. Napolitano, G. Costante, and M. L. Fravolini. A Comprehensive Case Study of Data-Driven Methods for Robust Aircraft Sensor Fault Isolation. Sensors (Basel, Switzerland), 21, 2021. URL: https://doi.org/10.3390/s21051645.
  16. Nicholas Cartocci, Marcello R. Napolitano, Francesco Crocetti, Gabriele Costante, Paolo Valigi, and Mario L. Fravolini. Data-Driven Fault Diagnosis Techniques: Non-Linear Directional Residual vs. Machine-Learning-Based Methods. Sensors, 22(7), 2022. URL: https://doi.org/10.3390/s22072635.
  17. Paolo Castaldi, Nicola Mimmo, and Silvio Simani. Avionic air data sensors fault detection and isolation by means of singular perturbation and geometric approach. Sensors, 17(10):2202, 2017. Publisher: MDPI. URL: https://doi.org/10.3390/S17102202.
  18. García H de Marina, Andres Marcos, and Rodrigo Haya. Angle of Attack and True Airspeed failure sensor detection and recovery based on Unscented Kalman Filters for the ALPHA vehicle. Ifac Proceedings Volumes, 45(20):1197-1202, 2012. Publisher: Elsevier. Google Scholar
  19. Yiqun Dong. Implementing Deep Learning for comprehensive aircraft icing and actuator/sensor fault detection/identification. Eng. Appl. Artif. Intell., 83:28-44, 2019. URL: https://doi.org/10.1016/J.ENGAPPAI.2019.04.010.
  20. Yiqun Dong, Jiongran Wen, Youmin Zhang, and Jianliang Ai. Deep neural networks-based air data sensors fault detection for aircraft. In 2021 33rd Chinese Control and Decision Conference (CCDC), pages 442-447. IEEE, 2021. Google Scholar
  21. European Union Aviation Safety Agency EASA. Easa concept paper: First usable guidance for level 1&2 machine learning applications, 2023. Google Scholar
  22. Ryan Eubank, Ella Atkins, and Stephanie Ogura. Fault detection and fail-safe operation with a multiple-redundancy air-data system. In AIAA Guidance, Navigation, and Control Conference, page 7855, 2010. Google Scholar
  23. L. V. Eykeren and Q. Chu. Sensor fault detection and isolation for aircraft control systems by kinematic relations. Control Engineering Practice, 31:200-210, 2014. URL: https://doi.org/10.1016/J.CONENGPRAC.2014.02.017.
  24. M. L. Fravolini, M. Napolitano, G. D. Core, and Umberto Papa. Experimental interval models for the robust Fault Detection of Aircraft Air Data Sensors. Control Engineering Practice, 2018. URL: https://doi.org/10.1016/J.CONENGPRAC.2018.07.002.
  25. Mario L. Fravolini, Giuseppe Del Core, Umberto Papa, Paolo Valigi, and Marcello R Napolitano. Data-Driven Schemes for Robust Fault Detection of Air Data System Sensors. IEEE Transactions on Control Systems Technology, 27:234-248, 2019. URL: https://doi.org/10.1109/TCST.2017.2758345.
  26. Paul Freeman, Peter Seiler, and Gary J Balas. Robust fault detection for commercial transport air data probes. IFAC Proceedings Volumes, 44(1):13723-13728, 2011. Publisher: Elsevier. Google Scholar
  27. Paul Freeman, Peter Seiler, and Gary J Balas. Air data system fault modeling and detection. Control Engineering Practice, 21(10):1290-1301, 2013. Publisher: Elsevier. Google Scholar
  28. Luca Garbarino, Gaetano Zazzaro, Nicola Genito, Giancarmine Fasano, and Domenico Accardo. Neural network based architecture for fault detection and isolation in air data systems. In 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC), pages 2D4-1. IEEE, 2013. Google Scholar
  29. Roger W Gent, Nicholas P Dart, and James T Cansdale. Aircraft icing. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 358(1776):2873-2911, 2000. Google Scholar
  30. Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O'Reilly Media, Inc.", 2022. Google Scholar
  31. Philippe Goupil. AIRBUS state of the art and practices on FDI and FTC in flight control system. Control Engineering Practice, 19(6):524-539, 2011. URL: https://doi.org/10.1016/j.conengprac.2010.12.009.
  32. Srikanth Gururajan, Mario L. Fravolini, Haiyang Chao, Matthew Rhudy, and Marcello R. Napolitano. Performance evaluation of neural network based approaches for airspeed Sensor Failure Accommodation on a small UAV. In 21st Mediterranean Conference on Control and Automation, pages 603-608, 2013. URL: https://doi.org/10.1109/MED.2013.6608784.
  33. Ch Hajiyev. Tracy–Widom distribution based fault detection approach: Application to aircraft sensor/actuator fault detection. Isa Transactions, 51(1):189-197, 2012. Publisher: Elsevier. Google Scholar
  34. Soren Hansen and Mogens Blanke. Diagnosis of Airspeed Measurement Faults for Unmanned Aerial Vehicles. IEEE Transactions on Aerospace and Electronic Systems, 50(1):224-239, 2014. URL: https://doi.org/10.1109/TAES.2013.120420.
  35. Søren Hansen, Mogens Blanke, and Jens Adrian. Diagnosis of uav pitot tube defects using statistical change detection. IFAC Proceedings Volumes, 43(16):485-490, 2010. Publisher: Elsevier. Google Scholar
  36. Georges Hardier, Cédric Seren, Pierre Ezerzere, and G Puyou. Aerodynamic model inversion for virtual sensing of longitudinal flight parameters. In 2013 conference on control and fault-tolerant systems (SysTol), pages 140-145. IEEE, 2013. Google Scholar
  37. Omar Hazbon Álvarez. Fault tolerant air data system for pitot tube failure. PhD thesis, Publisher: Escuela de Ingenierías, 2020. Google Scholar
  38. Maria JESUS DE LA FUENTE. Foundations for fault detection and diagnosis in fdi and dx, June 2024. Google Scholar
  39. R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82(1):35-45, March 1960. URL: https://doi.org/10.1115/1.3662552.
  40. Ugur Kilic and Gulay Unal. Aircraft air data system fault detection and reconstruction scheme design. Aircraft Engineering and Aerospace Technology, 93(6):1104-1114, 2021. Publisher: Emerald Publishing Limited. Google Scholar
  41. E. Kiyak, A. Kahvecioğlu, and F. Caliskan. Aircraft Sensor and Actuator Fault Detection, Isolation, and Accommodation. Journal of Aerospace Engineering, 24:46-58, 2011. URL: https://doi.org/10.1061/(ASCE)AS.1943-5525.0000052.
  42. Zhenwei Li, Yongmei Cheng, Huibin Wang, and Huaxia Wang. Fault detection approach applied to inertial navigation system/air data system integrated navigation system with time-offset. IET Radar, Sonar & Navigation, 15(9):945-956, 2021. Publisher: Wiley Online Library. Google Scholar
  43. A. F. Loza, J. Cieslak, D. Henry, J. Dávila, and A. Zolghadri. Sensor fault diagnosis using a non-homogeneous high-order sliding mode observer with application to a transport aircraft. Iet Control Theory and Applications, 9:598-607, 2015. URL: https://doi.org/10.1049/IET-CTA.2014.0226.
  44. Peng Lu, Laurens Van Eykeren, E Van Kampen, CC De Visser, and QP Chu. Adaptive three-step Kalman filter for air data sensor fault detection and diagnosis. Journal of Guidance, Control, and Dynamics, 39(3):590-604, 2016. Publisher: American Institute of Aeronautics and Astronautics. Google Scholar
  45. Peng Lu, Laurens Van Eykeren, Erik-Jan Van Kampen, and Q Ping Chu. Air data sensor fault detection and diagnosis with application to real flight data. In AIAA Guidance, Navigation, and Control Conference, page 1311, 2015. Google Scholar
  46. Massimiliano Mattei and Gaetano Paviglianiti. Managing sensor hardware redundancy on a small commercial aircraft with Hinf FDI observers. IFAC Proceedings Volumes, 38(1):347-352, 2005. Publisher: Elsevier. Google Scholar
  47. Ron J Patton and Carlos J Lopez-Toribio. Artificial intelligence approaches to fault diagnosis. In IEE Colloquium on Update on Developments in Intelligent Control (Ref. No. 1998/513), pages 3-1. IET, 1998. Google Scholar
  48. S. Prabhu and G. Anitha. An innovative analytic redundancy approach to air data sensor fault detection. The Aeronautical Journal, 124:346-367, 2019. URL: https://doi.org/10.1017/aer.2019.143.
  49. S. Prabhu and G. Anitha. Robust fault detection and diagnosis of primary air data sensors in the presence of atmospheric turbulence. The Aeronautical Journal, 2023. URL: https://doi.org/10.1017/aer.2023.32.
  50. E. Principi, D. Rossetti, S. Squartini, and F. Piazza. Unsupervised electric motor fault detection by using deep autoencoders. IEEE/CAA Journal of Automatica Sinica, 6:441-451, 2019. URL: https://doi.org/10.1109/JAS.2019.1911393.
  51. Matthew B. Rhudy, Mario L. Fravolini, Yu Gu, Marcello R. Napolitano, Srikanth Gururajan, and Haiyang Chao. Aircraft model-independent airspeed estimation without pitot tube measurements. IEEE Transactions on Aerospace and Electronic Systems, 51(3):1980-1995, 2015. URL: https://doi.org/10.1109/TAES.2015.130631.
  52. Paraskevi A Samara, George N Fouskitakis, John S Sakellariou, and Spilios D Fassois. A statistical method for the detection of sensor abrupt faults in aircraft control systems. IEEE Transactions on Control Systems Technology, 16(4):789-798, 2008. Publisher: IEEE. URL: https://doi.org/10.1109/TCST.2007.903109.
  53. Cédric Seren, Pierre Ezerzere, and Georges Hardier. Model–based techniques for virtual sensing of longitudinal flight parameters. International Journal of Applied Mathematics and Computer Science, 25(1):23-38, 2015. URL: https://doi.org/10.1515/AMCS-2015-0002.
  54. Sandeep Kumar Shukla and Jean-Pierre Talpin. Synthesis of embedded software: frameworks and methodologies for correctness by construction. Springer Science & Business Media, 2010. Google Scholar
  55. Brian M. de Silva, Jared L. Callaham, Jonathan Jonker, Nicholas Goebel, Jennifer Klemisch, Darren McDonald, Nathan S. Hicks, J. Kutz, S. Brunton, and A. Aravkin. Physics-informed machine learning for sensor fault detection with flight test data. ArXiv, abs/2006.13380, 2020. URL: https://arxiv.org/abs/2006.13380.
  56. Dan Simon. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons, 2006. Google Scholar
  57. Kerry Sun and Demoz Gebre-Egziabher. A fault detection and isolation design for a dual pitot tube air data system. In 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), pages 62-72. IEEE, 2020. URL: https://doi.org/10.1109/PLANS46316.2020.9110179.
  58. Kerry Sun and Demoz Gebre-Egziabher. Air data fault detection and isolation for small UAS using integrity monitoring framework. Navigation, 68(3):577-600, 2021. Publisher: Wiley Online Library. Google Scholar
  59. Yiming Wan, Tamas Keviczky, and Michel Verhaegen. Robust air data sensor fault diagnosis with enhanced fault sensitivity using moving horizon estimation. In 2016 American control conference (ACC), pages 5969-5975. IEEE, 2016. URL: https://doi.org/10.1109/ACC.2016.7526606.
  60. Stephen Whitmore, Timothy Moes, and Cornelius Leondes. Failure detection and fault management techniques for flush airdata sensing systems. In 30th Aerospace Sciences Meeting and Exhibit, page 263, 1992. Google Scholar
  61. Yunmei Zhao, Hang Zhao, Jianliang Ai, Yiqun Dong, and others. Robust data-driven fault detection: An application to aircraft air data sensors. International Journal of Aerospace Engineering, 2022, 2022. Publisher: Hindawi. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail