Exploring Causal Relationships Among Emotional and Topical Trajectories in Political Text Data

Authors Andreas Baumann , Klaus Hofmann, Bettina Kern , Anna Marakasova, Julia Neidhardt , Tanja Wissik

Thumbnail PDF


  • Filesize: 0.61 MB
  • 8 pages

Document Identifiers

Author Details

Andreas Baumann
  • University of Vienna, Austria
Klaus Hofmann
  • University of Vienna, Austria
Bettina Kern
  • University of Vienna, Austria
Anna Marakasova
  • TU Wien, Austria
Julia Neidhardt
  • TU Wien, Austria
Tanja Wissik
  • Austrian Academy of Sciences, Vienna, Austria

Cite AsGet BibTex

Andreas Baumann, Klaus Hofmann, Bettina Kern, Anna Marakasova, Julia Neidhardt, and Tanja Wissik. Exploring Causal Relationships Among Emotional and Topical Trajectories in Political Text Data. In 3rd Conference on Language, Data and Knowledge (LDK 2021). Open Access Series in Informatics (OASIcs), Volume 93, pp. 38:1-38:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


We explore relationships between dynamics of emotion (arousal and valence) and topical stability in political discourse in two diachronic corpora of Austrian German. In doing so, we assess interactions among emotional and topical dynamics related to political parties as well as interactions between two different domains of discourse: debates in the parliament and journalistic media. Methodologically, we employ unsupervised techniques, time-series clustering and Granger-causal modeling to detect potential interactions. We find that emotional and topical dynamics in the media are only rarely a reflex of dynamics in parliamentary discourse.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Lexical semantics
  • Computing methodologies → Discourse, dialogue and pragmatics
  • Information systems → Sentiment analysis
  • time-series clustering
  • Granger causality
  • topical stability
  • emotion
  • political discourse


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Andreas Baumann, Julia Neidhardt, and Tanja Wissik. DYLEN: Diachronic Dynamics of Lexical Networks. In LDK (Posters), pages 24-28, 2019. Google Scholar
  2. Giovanni Delnevo, Marco Roccetti, and Silvia Mirri. Modeling patients' online medical conversations: a granger causality approach. In Proceedings of the 2018 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies, pages 40-44, 2018. Google Scholar
  3. Sarmistha Dutta, Jennifer Ma, and Munmun De Choudhury. Measuring the impact of anxiety on online social interactions. In Proceedings of the International AAAI Conference on Web and Social Media, volume 12, 2018. Google Scholar
  4. C. W. J. Granger. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica, 1969. URL: https://doi.org/10.2307/1912791.
  5. Klaus Hofmann, Anna Marakasova, Andreas Baumann, Julia Neidhardt, and Tanja Wissik. Comparing lexical usage in political discourse across diachronic corpora. In Proceedings of the Second ParlaCLARIN Workshop, pages 58-65, 2020. Google Scholar
  6. Paul Jaccard. The distribution of the flora in the alpine zone. 1. New phytologist, 11(2):37-50, 1912. Google Scholar
  7. Bettina M. J. Kern, Klaus Hofmann, Andreas Baumann, and Tanja Wissik. Komparative Zeitreihenanalyse der lexikalischen Stabilität und Emotion in österreichischen Korpusdaten. In Proceedings of Digital Lexis and beyond at OELT, 2021. Google Scholar
  8. Maximilian Köper and Sabine Schulte Im Walde. Automatically generated affective norms of abstractness, arousal, imageability and valence for 350 000 german lemmas. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 2595-2598, 2016. Google Scholar
  9. Jian Li, Zhenjing Xu, Lean Yu, and Ling Tang. Forecasting oil price trends with sentiment of online news articles. Procedia Computer Science, 91:1081-1087, 2016. Google Scholar
  10. GE Marcus and N Demertzis. Emotions in politics: The affect dimension in political tension. Plagrave Macmillan Press, 2013. Google Scholar
  11. Anshul Mittal and Arpit Goel. Stock prediction using twitter sentiment analysis. Standford University, CS229, 15, 2012. URL: http://cs229.stanford.edu/proj2011/GoelMittal-StockMarketPredictionUsingTwitterSentimentAnalysis.pdf.
  12. Pablo Montero, José A Vilar, et al. TSclust: An R package for time series clustering. Journal of Statistical Software, 62(1):1-43, 2014. Google Scholar
  13. Judea Pearl. Graphical models for probabilistic and causal reasoning. In Computer Science Handbook, Second Edition. Springer, 2004. URL: https://doi.org/10.1201/b16812-50.
  14. Thomas V. Perneger. What’s wrong with Bonferroni adjustments, 1998. URL: https://doi.org/10.1136/bmj.316.7139.1236.
  15. Jutta Ransmayr, Karlheinz Mörth, and Matej Ďurčo. Ii. amc (austrian media corpus)-korpusbasierte forschungen zum österreichischen deutsch. In Digitale Methoden der Korpusforschung in Österreich. Verlag der Österreichischen Akademie der Wissenschaften, 2017. Google Scholar
  16. Malte Rosemeyer and Freek Van de Velde. On cause and correlation in language change: Word order and clefting in brazilian portuguese. Language Dynamics and Change, 11(1):130-166, 2021. Google Scholar
  17. Jasmina Smailović, Miha Grčar, Nada Lavrač, and Martin Žnidaršič. Predictive sentiment analysis of tweets: A stock market application. In International Workshop on Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data, pages 77-88. Springer, 2013. Google Scholar
  18. Stefan Stieglitz and Linh Dang-Xuan. Emotions and information diffusion in social media - Sentiment of microblogs and sharing behavior. Journal of Management Information Systems, 2013. URL: https://doi.org/10.2753/MIS0742-1222290408.
  19. Matthias Studer. Weightedcluster library manual: A practical guide to creating typologies of trajectories in the social sciences with r. LIVES Working papers, 2013. URL: https://doi.org/10.12682/lives.2296-1658.2013.24.
  20. George Sugihara, Robert May, Hao Ye, Chih Hao Hsieh, Ethan Deyle, Michael Fogarty, and Stephan Munch. Detecting causality in complex ecosystems. Science, 2012. URL: https://doi.org/10.1126/science.1227079.
  21. Maite Taboada. Sentiment Analysis: An Overview from Linguistics, 2016. URL: https://doi.org/10.1146/annurev-linguistics-011415-040518.
  22. Joshua Tucker, Andrew Guess, Pablo Barbera, Cristian Vaccari, Alexandra Siegel, Sergey Sanovich, Denis Stukal, and Brendan Nyhan. Social Media, Political Polarization, and Political Disinformation: A Review of the Scientific Literature. SSRN Electronic Journal, 2018. URL: https://doi.org/10.2139/ssrn.3144139.
  23. Ineke Van Der Valk. Right-wing parliamentary discourse on immigration in france. Discourse & Society, 14(3):309-348, 2003. Google Scholar
  24. Amy Beth Warriner, Victor Kuperman, and Marc Brysbaert. Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior Research Methods, 2013. URL: https://doi.org/10.3758/s13428-012-0314-x.
  25. Tanja Wissik and Hannes Pirker. ParlAT beta Corpus of Austrian Parliamentary Records. In Proceedings of the LREC 2018 Workshop’ParlaCLARIN: LREC2018 workshop on creating and using parliamentary corpora, pages 20-23, 2018. Google Scholar
  26. Simon N Wood. Generalized additive models: an introduction with R. CRC press, 2017. Google Scholar
  27. Mohammed J Zaki and Wagner Meira. Data mining and analysis: Fundamental concepts and algorithms. Cambridge University Press, New York, 2014. Google Scholar
  28. Cunlu Zou and Jianfeng Feng. Granger causality vs. dynamic bayesian network inference: a comparative study. BMC bioinformatics, 10(1):1-17, 2009. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail