Document Open Access Logo

A Re-Ranking Method Based on Irrelevant Documents in Ad-Hoc Retrieval

Authors Rabeb Mbarek, Mohamed Tmar, Hawete Hattab, Mohand Boughanem



PDF
Thumbnail PDF

File

OASIcs.SLATE.2016.2.pdf
  • Filesize: 434 kB
  • 10 pages

Document Identifiers

Author Details

Rabeb Mbarek
Mohamed Tmar
Hawete Hattab
Mohand Boughanem

Cite AsGet BibTex

Rabeb Mbarek, Mohamed Tmar, Hawete Hattab, and Mohand Boughanem. A Re-Ranking Method Based on Irrelevant Documents in Ad-Hoc Retrieval. In 5th Symposium on Languages, Applications and Technologies (SLATE'16). Open Access Series in Informatics (OASIcs), Volume 51, pp. 2:1-2:10, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)
https://doi.org/10.4230/OASIcs.SLATE.2016.2

Abstract

In this paper, we propose a novel approach for document re-ranking, which relies on the concept of negative feedback represented by irrelevant documents. In a previous paper, a pseudo-relevance feedback method is introduced using an absorbing document ~d which best fits the user's need. The document ~d is orthogonal to the majority of irrelevant documents. In this paper, this document is used to re-rank the initial set of ranked documents in Ad-hoc retrieval. The evaluation carried out on a standard document collection shows the effectiveness of the proposed approach.
Keywords
  • Re-ranking
  • absorption of irrelevance
  • vector product

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Eneko Agirre, Giorgio Maria Di Nunzio, Thomas Mandl, and Arantxa Otegi. CLEF 2009 ad hoc track overview: Robust-WSD task. In Carol Peters, Giorgio Maria Di Nunzio, Mikko Kurimo, Thomas Mandl, Djamel Mostefa, Anselmo Peñas, and Giovanna Roda, editors, Multilingual Information Access Evaluation I, pages 36-49. Springer, Berlin, Heidelberg, 2010. URL: http://dx.doi.org/10.1007/978-3-642-15754-7_3.
  2. Rony Attar, Fraenkel, and Aviezri Siegmund. Local feedback in full-text retrieval systems. Journal of the ACM, 24(3):397-417, July 1977. URL: http://dx.doi.org/10.1145/322017.322021.
  3. Pierpaolo Basile, Annalina Caputo, and Giovanni Semeraro. Negation for document re-ranking in ad-hoc retrieval. In Giambattista Amati and Fabio Crestani, editors, Advances in Information Retrieval Theory, pages 285-296. Springer, Berlin, Heidelberg, 2011. URL: http://dx.doi.org/10.1007/978-3-642-23318-0_26.
  4. Garrett Birkhoff and John Von Neumann. The logic of quantum mechanics. Annals of Mathematics, 37(4):823-843, 1936. Google Scholar
  5. Chris Buckley, Gerard Salton, James Allan, and Amit Singhal. Automatic query expansion using SMART: TREC 3. In In Proceedings of The third Text REtrieval Conference (TREC-3), pages 69-80, 1994. Google Scholar
  6. Czesław Daniłowicz and Jarosław Baliński. Document ranking based upon Markov chains. Information Processing and Management, 37(4):623-637, July 2001. URL: http://dx.doi.org/10.1016/S0306-4573(00)00038-8.
  7. Anna Khudyak Kozorovitzky and Oren Kurland. From "identical" to "similar": Fusing retrieved lists based on inter-document similarities. In Leif Azzopardi, Gabriella Kazai, Stephen Robertson, Stefan Rüger, Milad Shokouhi, Dawei Song, and Emine Yilmaz, editors, Advances in Information Retrieval Theory, pages 212-223. Springer, Berlin, Heidelberg, 2009. URL: http://dx.doi.org/10.1007/978-3-642-04417-5_19.
  8. Oren Kurland. Re-ranking search results using language models of query-specific clusters. Information Retrieval, 12(4):437-460, 2009. URL: http://dx.doi.org/10.1007/s10791-008-9065-9.
  9. Oren Kurland and Lillian Lee. Corpus structure, language models, and ad hoc information retrieval. In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 194-201, New York, NY, USA, 2004. ACM. URL: http://dx.doi.org/10.1145/1008992.1009027.
  10. Xiaoyong Liu and W. Bruce Croft. Cluster-based retrieval using language models. In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 186-193, New York, NY, USA, 2004. ACM. URL: http://dx.doi.org/10.1145/1008992.1009026.
  11. Rabeb Mbarek, Mohamed, Hawete Hattab, and Mohand Boughanem. Pseudo-relevance feedback method based on the cross-product of irrelevant documents. International Journal Web Applications, 8(1):8-16, March 2016. Google Scholar
  12. Karthik Raman, Raghavendra Udupa, Pushpak Bhattacharya, and Abhijit Bhole. On improving pseudo-relevance feedback using pseudo-irrelevant documents. In Proceedings of the 32nd European Conference on Advances in Information Retrieval, pages 573-576, Berlin, Heidelberg, 2010. Springer-Verlag. URL: http://dx.doi.org/10.1007/978-3-642-12275-0_50.
  13. Stephen Robertson, Hugo Zaragoza, and Michael Taylor. Simple BM25 extension to multiple weighted fields. In Proceedings of the Thirteenth ACM International Conference on Information and Knowledge Management, pages 42-49, New York, NY, USA, 2004. ACM. URL: http://dx.doi.org/10.1145/1031171.1031181.
  14. Stephen E. Robertson and Karen Sparck Jones. Relevance weighting of search terms. Journal of the American Society for Information Science, 27(3):129-146, 1976. URL: http://dx.doi.org/10.1002/asi.4630270302.
  15. Joseph J. Rocchio. Relevance feedback in information retrieval. In Gerard Salton, editor, The SMART retrieval system - experiments in automatic document processing, pages 313-323. Englewood Cliffs, NJ: Prentice-Hall, 1971. Google Scholar
  16. Gerard Salton and Chris Buckley. Improving retrieval performance by relevance feedback. In Karen Sparck Jones and Peter Willett, editors, Readings in Information Retrieval, pages 355-364. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997. Google Scholar
  17. Xuehua Shen, Bin Tan, and ChengXiang Zhai. Context-sensitive information retrieval using implicit feedback. In Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 43-50, New York, NY, USA, 2005. ACM. URL: http://dx.doi.org/10.1145/1076034.1076045.
  18. Amit Singhal, Mandar Mitra, and Chris Buckley. Learning routing queries in a query zone. In Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 25-32, New York, NY, USA, 1997. ACM. URL: http://dx.doi.org/10.1145/258525.258530.
  19. Xuanhui Wang, Hui Fang, and ChengXiang Zhai. A study of methods for negative relevance feedback. In Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 219-226, New York, NY, USA, 2008. ACM. URL: http://dx.doi.org/10.1145/1390334.1390374.
  20. Dominic Widdows. Orthogonal negation in vector spaces for modelling word-meanings and document retrieval. In Proceedings of the 41st Annual Meeting on Association for Computational Linguistics, volume 1, pages 136-143, Stroudsburg, PA, USA, 2003. Association for Computational Linguistics. URL: http://dx.doi.org/10.3115/1075096.1075114.
  21. Jinxi Xu and W. Bruce Croft. Query expansion using local and global document analysis. In Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 4-11, New York, NY, USA, 1996. ACM. URL: http://dx.doi.org/10.1145/243199.243202.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail