Tuning PI controller in non-linear uncertain closed-loop systems with interval analysis

Authors Julien Alexandre dit Sandretto, Alexandre Chapoutot, Olivier Mullier

Thumbnail PDF


  • Filesize: 1.1 MB
  • 12 pages

Document Identifiers

Author Details

Julien Alexandre dit Sandretto
Alexandre Chapoutot
Olivier Mullier

Cite AsGet BibTex

Julien Alexandre dit Sandretto, Alexandre Chapoutot, and Olivier Mullier. Tuning PI controller in non-linear uncertain closed-loop systems with interval analysis. In 2nd International Workshop on Synthesis of Complex Parameters (SynCoP'15). Open Access Series in Informatics (OASIcs), Volume 44, pp. 91-102, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


The tuning of a PI controller is usually done through simulation, except for few classes of problems, e.g., linear systems. With a new approach for validated integration allowing us to simulate dynamical systems with uncertain parameters, we are able to design guaranteed PI controllers. In practical, we propose a new method to identify the parameters of a PI controller for non-linear plants with bounded uncertain parameters using tools from interval analysis and validated simulation. This work relies on interval computation and guaranteed numerical integration of ordinary differential equations based on Runge-Kutta methods. Our method is applied to the well-known cruise-control problem, under a simplified linear version and with the aerodynamic force taken into account leading to a non-linear formulation.
  • PID Tuning
  • Guaranteed numerical integration
  • non-linear ordinary differential equations


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. K. J. Ãström and T. Hägglund. PID controllers: theory, design, and tuning. Instrument Society of America, Research Triangle Park, NC, 1995. Google Scholar
  2. J. Alexandre dit Sandretto and A. Chapoutot. Validated Solution of Initial Value Problem for Ordinary Differential Equations based on Explicit and Implicit Runge-Kutta Schemes. Research report, ENSTA ParisTech, January 2015. Google Scholar
  3. E. Auer and A. Rauh. Vericomp: a system to compare and assess verified IVP solvers. Computing, 94(2-4):163-172, 2012. Google Scholar
  4. J. Bondia, M. Kieffer, E. Walter, J. Monreal, and J. Picó. Guaranteed tuning of PID controllers for parametric uncertain systems. In Decision and Control, page 2948endash2953. IEEE, 2004. Google Scholar
  5. O. Bouissou, A. Chapoutot, and A. Djoudi. Enclosing temporal evolution of dynamical systems using numerical methods. In NASA Formal Methods, number 7871 in LNCS, pages 108-123. Springer, 2013. Google Scholar
  6. O. Bouissou and M. Martel. GRKLib: a Guaranteed Runge Kutta Library. In Scientific Computing, Computer Arithmetic and Validated Numerics, 2006. Google Scholar
  7. V. Broida. Extrapolation des résponses indicielles apériodiques. Automatisme, XVI, 1969. Google Scholar
  8. J. C. Butcher. Coefficients for the study of Runge-Kutta integration processes. Journal of the Australian Mathematical Society, 3:185-201, 5 1963. Google Scholar
  9. L. H. de Figueiredo and J. Stolfi. Self-Validated Numerical Methods and Applications. Brazilian Mathematics Colloquium monographs. IMPA/CNPq, 1997. Google Scholar
  10. L. Desborough and R. Miller. Increasing customer value of industrial control performance monitoring - Honeywell’s experience. In AIChE Symposium Series, pages 169-189, 2002. Google Scholar
  11. A. Dowling. Modeling and PID controller example - cruise control for an electric vehicle. Google Scholar
  12. E. Hairer, Syvert P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems. Springer-Verlag, 2nd edition, 2009. Google Scholar
  13. L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis. Springer, 2001. Google Scholar
  14. Y. Lin and M. A. Stadtherr. Validated solutions of initial value problems for parametric odes. Applied Numerical Mathematics, 57(10):1145-1162, 2007. Google Scholar
  15. R. J. Lohner. Enclosing the solutions of ordinary initial and boundary value problems. Computer Arithmetic, pages 255-286, 1987. Google Scholar
  16. R. Moore. Interval Analysis. Prentice Hall, 1966. Google Scholar
  17. N. Nedialkov, K. Jackson, and G. Corliss. Validated solutions of initial value problems for ordinary differential equations. Appl. Math. and Comp., 105(1):21 - 68, 1999. Google Scholar
  18. A. Neumaier. The wrapping effect, ellipsoid arithmetic, stability and confidence regions. Computing Supplementum, 9, 1993. Google Scholar
  19. J. Vehì, I. Ferrer, and M. À. Sainz. A survey of applications of interval analysis to robust control. In IFAC World Congress, 2002. Google Scholar
  20. J.G. Ziegler and N.B. Nichols. Optimum settings for automatic controllers. Journal of dynamic systems, measurement, and control, 115(2B):220-222, 1993. Google Scholar