@InProceedings{engel_et_al:OASIcs.VLUDS.2011.135,
author = {Engel, Daniel and H\"{u}ttenberger, Lars and Hamann, Bernd},
title = {{A Survey of Dimension Reduction Methods for High-dimensional Data Analysis and Visualization}},
booktitle = {Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011},
pages = {135--149},
series = {Open Access Series in Informatics (OASIcs)},
ISBN = {978-3-939897-46-0},
ISSN = {2190-6807},
year = {2012},
volume = {27},
editor = {Garth, Christoph and Middel, Ariane and Hagen, Hans},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.VLUDS.2011.135},
URN = {urn:nbn:de:0030-drops-37475},
doi = {10.4230/OASIcs.VLUDS.2011.135},
annote = {Keywords: high-dimensional, multivariate data, dimension reduction, manifold learning}
}