MELArt: A Multimodal Entity Linking Dataset for Art

Authors Alejandro Sierra-Múnera , Linh Le , Gianluca Demartini , Ralf Krestel



PDF
Thumbnail PDF

File

TGDK.2.2.8.pdf
  • Filesize: 3.9 MB
  • 22 pages

Document Identifiers

Author Details

Alejandro Sierra-Múnera
  • Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
Linh Le
  • The University of Queensland, Brisbane, Australia
Gianluca Demartini
  • The University of Queensland, Brisbane, Australia
Ralf Krestel
  • ZBW - Leibniz Information Centre for Economics, Kiel, Germany
  • Kiel University, Kiel, Germany

Cite As Get BibTex

Alejandro Sierra-Múnera, Linh Le, Gianluca Demartini, and Ralf Krestel. MELArt: A Multimodal Entity Linking Dataset for Art. In Special Issue on Resources for Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 2, pp. 8:1-8:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/TGDK.2.2.8

Abstract

Traditional named entity linking (NEL) tools have largely employed a general-domain approach, spanning across various entity types such as persons, organizations, locations, and events in a multitude of contexts. While multimodal entity linking datasets exist (e.g., disambiguation of person names with the help of photographs), there is a need to develop domain-specific resources that represent the unique challenges present in domains like cultural heritage (e.g., stylistic changes through time, diversity of social and political context). To address this gap, our work presents a novel multimodal entity linking benchmark dataset for the art domain together with a comprehensive experimental evaluation of existing NEL methods on this new dataset. The dataset encapsulates various entities unique to the art domain. During the dataset creation process, we also adopt manual human evaluation, providing high-quality labels for our dataset. We introduce an automated process that facilitates the generation of this art dataset, harnessing data from multiple sources (Artpedia, Wikidata and Wikimedia Commons) to ensure its reliability and comprehensiveness. Furthermore, our paper delineates best practices for the integration of art datasets, and presents a detailed performance analysis of general-domain entity linking systems, when applied to domain-specific datasets. Through our research, we aim to address the lack of datasets for NEL in the art domain, providing resources for the development of new, more nuanced, and contextually rich entity linking methods in the realm of art and cultural heritage.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Information extraction
Keywords
  • A Multimodal Entity Linking Dataset
  • Named Entity Linking
  • Art Domain
  • Wikidata
  • Wikimedia
  • Artpedia

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, and Leonidas J. Guibas. Artemis: Affective language for visual art. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021, pages 11569-11579. Computer Vision Foundation / IEEE, 2021. URL: https://doi.org/10.1109/CVPR46437.2021.01140.
  2. Omar Adjali, Romaric Besançon, Olivier Ferret, Hervé Le Borgne, and Brigitte Grau. Multimodal entity linking for tweets. In Advances in Information Retrieval - 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14-17, 2020, Proceedings, Part I, volume 12035 of Lecture Notes in Computer Science, pages 463-478. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-45439-5_31.
  3. Sofia Baroncini, Bruno Sartini, Marieke van Erp, Francesca Tomasi, and Aldo Gangemi. Is dc:subject enough? A landscape on iconography and iconology statements of knowledge graphs in the semantic web. Journal of Documentation, 79(7):115-136, March 2023. URL: https://doi.org/10.1108/JD-09-2022-0207.
  4. Hannah Bast and Björn Buchhold. Qlever: A query engine for efficient sparql+text search. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, Singapore, November 06 - 10, 2017, CIKM '17, pages 647-656, New York, NY, USA, 2017. ACM. URL: https://doi.org/10.1145/3132847.3132921.
  5. Sabine Lang and Björn Ommer. Transforming information into knowledge: How computational methods reshape art history. Digital Humanities Quaterly, 15(3), 2021. URL: http://www.digitalhumanities.org/dhq/vol/15/3/000560/000560.html.
  6. Pengfei Luo, Tong Xu, Shiwei Wu, Chen Zhu, Linli Xu, and Enhong Chen. Multi-grained multimodal interaction network for entity linking. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, August 6-10, 2023, pages 1583-1594. ACM, 2023. URL: https://doi.org/10.1145/3580305.3599439.
  7. Roberto Pirrone, Vincenzo Cannella, Orazio Gambino, Arianna Pipitone, and Giuseppe Russo. Wikiart: An ontology-based information retrieval system for arts. In Ninth International Conference on Intelligent Systems Design and Applications, ISDA 2009, Pisa, Italy , November 30-December 2, 2009, pages 913-918. IEEE Computer Society, 2009. URL: https://doi.org/10.1109/ISDA.2009.219.
  8. Ahmad Sakor, Kuldeep Singh, Anery Patel, and Maria-Esther Vidal. Falcon 2.0: An entity and relation linking tool over wikidata. In CIKM '20: The 29th ACM International Conference on Information and Knowledge Management, Virtual Event, Ireland, October 19-23, 2020, CIKM '20, pages 3141-3148, New York, NY, USA, 2020. ACM. URL: https://doi.org/10.1145/3340531.3412777.
  9. Bruno Sartini. IICONGRAPH: improved iconographic and iconological statements in knowledge graphs. In The Semantic Web - 21st International Conference, ESWC 2024, Hersonissos, Crete, Greece, May 26-30, 2024, Proceedings, Part II, volume 14665 of Lecture Notes in Computer Science, pages 57-74, Cham, 2024. Springer. URL: https://doi.org/10.1007/978-3-031-60635-9_4.
  10. Alejandro Sierra-Múnera, Linh Le, Gianluca Demartini, and Ralf Krestel. MELArt Dataset. Dataset (visited on 2024-12-10). URL: https://doi.org/10.48610/8a1ccdf.
  11. Alejandro Sierra-Múnera, Linh Le, Gianluca Demartini, and Ralf Krestel. MELArt Dataset Generation. Software, (visited on 2024-12-10). URL: https://github.com/HPI-Information-Systems/MELArt
    Software Heritage Logo archived version
    full metadata available at: https://doi.org/10.4230/artifacts.22529
  12. Alejandro Sierra-Múnera, Linh Le, Gianluca Demartini, and Ralf Krestel. MELArt Experiments. Software, (visited on 2024-12-10). URL: https://github.com/HPI-Information-Systems/MELArt_experiments
    Software Heritage Logo archived version
    full metadata available at: https://doi.org/10.4230/artifacts.22616
  13. Matteo Stefanini, Marcella Cornia, Lorenzo Baraldi, Massimiliano Corsini, and Rita Cucchiara. Artpedia: A new visual-semantic dataset with visual and contextual sentences in the artistic domain. In Image Analysis and Processing - ICIAP 2019 - 20th International Conference, Trento, Italy, September 9-13, 2019, Proceedings, Part II, volume 11752 of Lecture Notes in Computer Science, pages 729-740. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-30645-8_66.
  14. Peng Wang, Jiangheng Wu, and Xiaohang Chen. Multimodal entity linking with gated hierarchical fusion and contrastive training. In SIGIR '22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, July 11 - 15, 2022, pages 938-948. ACM, 2022. URL: https://doi.org/10.1145/3477495.3531867.
  15. Xuwu Wang, Junfeng Tian, Min Gui, Zhixu Li, Rui Wang, Ming Yan, Lihan Chen, and Yanghua Xiao. Wikidiverse: A multimodal entity linking dataset with diversified contextual topics and entity types. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 4785-4797. Association for Computational Linguistics, 2022. URL: https://doi.org/10.18653/v1/2022.acl-long.328.
  16. Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettlemoyer. Scalable zero-shot entity linking with dense entity retrieval. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages 6397-6407. Association for Computational Linguistics, 2020. URL: https://doi.org/10.18653/v1/2020.emnlp-main.519.
  17. Nikolaos-Antonios Ypsilantis, Noa Garcia, Guangxing Han, Sarah Ibrahimi, Nanne van Noord, and Giorgos Tolias. The met dataset: Instance-level recognition for artworks. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL: http://cmp.felk.cvut.cz/met/.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail