DARTS, Volume 8, Issue 1

Special Issue of the 34th Euromicro Conference on Real-Time Systems (ECRTS 2022)



Thumbnail PDF

Editors

Angeliki Kritikakou
  • University of Rennes, Irisa, INRIA, CNRS, Rennes, France
Matthias Becker
  • KTH Royal Institute of Technology, Stockholm, Sweden

Publication Details


Access Numbers

Documents

No documents found matching your filter selection.
Document
Front Matter
Front Matter - ECRTS 2022 Artifacts, Table of Contents, Preface, Artifact Evaluation Committee

Authors: Angeliki Kritikakou and Matthias Becker


Abstract
Front Matter - ECRTS 2022 Artifacts, Table of Contents, Preface, Artifact Evaluation Committee

Cite as

Special Issue of the 34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Dagstuhl Artifacts Series (DARTS), Volume 8, Issue 1, pp. 0:i-0:x, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{kritikakou_et_al:DARTS.8.1.0,
  author =	{Kritikakou, Angeliki and Becker, Matthias},
  title =	{{Front Matter - ECRTS 2022 Artifacts, Table of Contents, Preface, Artifact Evaluation Committee}},
  pages =	{0:i--0:x},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Kritikakou, Angeliki and Becker, Matthias},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.8.1.0},
  URN =		{urn:nbn:de:0030-drops-164967},
  doi =		{10.4230/DARTS.8.1.0},
  annote =	{Keywords: Front Matter - ECRTS 2022 Artifacts, Table of Contents, Preface, Artifact Evaluation Committee}
}
Document
Artifact
Achieving Isolation in Mixed-Criticality Industrial Edge Systems with Real-Time Containers (Artifact)

Authors: Marco Barletta, Marcello Cinque, Luigi De Simone, and Raffaele Della Corte


Abstract
Real-time containers are a promising solution to reduce latencies in time-sensitive cloud systems. Recent efforts are emerging to extend their usage in industrial edge systems with mixed-criticality constraints. In these contexts, isolation becomes a major concern: a disturbance (such as timing faults or unexpected overloads) affecting a container must not impact the behavior of other containers deployed on the same hardware. In this artifact, we propose a novel architectural solution to achieve isolation in real-time containers, based on real-time co-kernels, hierarchical scheduling, and time-division networking. The architecture has been implemented on Linux patched with the Xenomai co-kernel, extended with a new hierarchical scheduling policy, named SCHED_DS, and integrating the RTNet stack. Experimental results, presented in the related scholarly paper, are promising in terms of overhead and latency compared to other Linux-based solutions. More importantly, the isolation of containers is guaranteed even in presence of severe co-located disturbances, such as faulty tasks (elapsing more time than declared) or high CPU, network, or I/O stress on the same machine.

Cite as

Marco Barletta, Marcello Cinque, Luigi De Simone, and Raffaele Della Corte. Achieving Isolation in Mixed-Criticality Industrial Edge Systems with Real-Time Containers (Artifact). In Special Issue of the 34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Dagstuhl Artifacts Series (DARTS), Volume 8, Issue 1, pp. 1:1-1:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{barletta_et_al:DARTS.8.1.1,
  author =	{Barletta, Marco and Cinque, Marcello and De Simone, Luigi and Della Corte, Raffaele},
  title =	{{Achieving Isolation in Mixed-Criticality Industrial Edge Systems with Real-Time Containers (Artifact)}},
  pages =	{1:1--1:12},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Barletta, Marco and Cinque, Marcello and De Simone, Luigi and Della Corte, Raffaele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.8.1.1},
  URN =		{urn:nbn:de:0030-drops-164979},
  doi =		{10.4230/DARTS.8.1.1},
  annote =	{Keywords: Real-time, Mixed-criticality, Containers, Edge computing}
}
Document
Artifact
Unikernel-Based Real-Time Virtualization Under Deferrable Servers: Analysis and Realization (Artifact)

Authors: Kuan-Hsun Chen, Mario Günzel, Boguslaw Jablkowski, Markus Buschhoff, and Jian-Jia Chen


Abstract
This artifact provides the source code to validate and reproduce the numerical results of the associated paper "Unikernel-Based Real-Time Virtualization under Deferrable Servers: Analysis and Realization". Due to the nature of a close-source project with the company, i.e., EMVICORE GmbH, the source code of the case study in Section 6.2 is not included in this artifact.

Cite as

Kuan-Hsun Chen, Mario Günzel, Boguslaw Jablkowski, Markus Buschhoff, and Jian-Jia Chen. Unikernel-Based Real-Time Virtualization Under Deferrable Servers: Analysis and Realization (Artifact). In Special Issue of the 34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Dagstuhl Artifacts Series (DARTS), Volume 8, Issue 1, pp. 2:1-2:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{chen_et_al:DARTS.8.1.2,
  author =	{Chen, Kuan-Hsun and G\"{u}nzel, Mario and Jablkowski, Boguslaw and Buschhoff, Markus and Chen, Jian-Jia},
  title =	{{Unikernel-Based Real-Time Virtualization Under Deferrable Servers: Analysis and Realization (Artifact)}},
  pages =	{2:1--2:2},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Chen, Kuan-Hsun and G\"{u}nzel, Mario and Jablkowski, Boguslaw and Buschhoff, Markus and Chen, Jian-Jia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.8.1.2},
  URN =		{urn:nbn:de:0030-drops-164987},
  doi =		{10.4230/DARTS.8.1.2},
  annote =	{Keywords: Unikernel, Virtualization, Reservation Servers, Deferrable Servers, Cyber-Physical Systems, Real-Time Systems}
}
Document
Artifact
A Formal Link Between Response Time Analysis and Network Calculus (Artifact)

Authors: Pierre Roux, Sophie Quinton, and Marc Boyer


Abstract
Classical Response Time Analysis (RTA) and Network Calculus (NC) are two major formalisms used for the verification of real-time properties. The related paper offer mathematical links between these two different theories. Based on these links, it then proves the equivalence of various key notions in both frameworks. This enables specialists of both formalisms to get increase confidence on their models, or even, like the authors, to discover errors in theorems by investigating apparent discrepancies between some notions expected to be equivalent. The presented mathematical results are all mechanically checked with the interactive theorem prover Coq, building on existing formalizations of RTA and NC. Establishing such a link between NC and RTA paves the way for improved real-time analyses obtained by combining both theories to enjoy their respective strengths (e.g., multicore analyses for RTA or clock drifts for NC). This artifact enables to reproduce these proofs.

Cite as

Pierre Roux, Sophie Quinton, and Marc Boyer. A Formal Link Between Response Time Analysis and Network Calculus (Artifact). In Special Issue of the 34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Dagstuhl Artifacts Series (DARTS), Volume 8, Issue 1, pp. 3:1-3:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{roux_et_al:DARTS.8.1.3,
  author =	{Roux, Pierre and Quinton, Sophie and Boyer, Marc},
  title =	{{A Formal Link Between Response Time Analysis and Network Calculus (Artifact)}},
  pages =	{3:1--3:3},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Roux, Pierre and Quinton, Sophie and Boyer, Marc},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.8.1.3},
  URN =		{urn:nbn:de:0030-drops-164990},
  doi =		{10.4230/DARTS.8.1.3},
  annote =	{Keywords: Response Time Analysis, Network Calculus, dense time, discrete time, response time, formal proof, Coq}
}
Document
Artifact
Scheduling Offset-Free Systems Under FIFO Priority Protocol (Artifact)

Authors: Matheus Ladeira, Emmanuel Grolleau, Fabien Bonneval, Gautier Hattenberger, Yassine Ouhammou, and Yuri Hérouard


Abstract
On UAVs, telemetry messages are often sent following a FIFO schedule, and some messages, depending on the FIFO queue state may suffer long delays, and can even be lost if the FIFO queue is full. Considering the high complexity of the problem of assigning offsets to periodic tasks, we propose a new heuristic, called GCD+, that we compare to the methods of the state of the art, showing that GCD+ significantly outperforms them on synthetic tasks sets. Then we use a real UAV use case, based on Paparazzi autopilot, to show that GCD+ behaves well. The proposed algorithm is meant to be the new Paparazzi’s automatic offset assignment method for messages.

Cite as

Matheus Ladeira, Emmanuel Grolleau, Fabien Bonneval, Gautier Hattenberger, Yassine Ouhammou, and Yuri Hérouard. Scheduling Offset-Free Systems Under FIFO Priority Protocol (Artifact). In Special Issue of the 34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Dagstuhl Artifacts Series (DARTS), Volume 8, Issue 1, pp. 4:1-4:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{ladeira_et_al:DARTS.8.1.4,
  author =	{Ladeira, Matheus and Grolleau, Emmanuel and Bonneval, Fabien and Hattenberger, Gautier and Ouhammou, Yassine and H\'{e}rouard, Yuri},
  title =	{{Scheduling Offset-Free Systems Under FIFO Priority Protocol (Artifact)}},
  pages =	{4:1--4:2},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Ladeira, Matheus and Grolleau, Emmanuel and Bonneval, Fabien and Hattenberger, Gautier and Ouhammou, Yassine and H\'{e}rouard, Yuri},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.8.1.4},
  URN =		{urn:nbn:de:0030-drops-165000},
  doi =		{10.4230/DARTS.8.1.4},
  annote =	{Keywords: Scheduling, non-preemptible, heuristics, FIFO, autopilot}
}
Document
Artifact
Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling (Artifact)

Authors: Federico Aromolo, Alessandro Biondi, and Geoffrey Nelissen


Abstract
This artifact provides the means to validate and reproduce the experimental results presented in the related paper "Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling". The paper introduces a response-time analysis for constrained-deadline self-suspending tasks scheduled under EDF on a uniprocessor system, based on a model transformation from self-suspending sporadic tasks to sporadic tasks with jitter. In the experimental evaluation presented in the paper, the performance of the proposed analysis approach for self-suspending tasks is compared with that of existing suspension-oblivious and suspension-aware analysis techniques.

Cite as

Federico Aromolo, Alessandro Biondi, and Geoffrey Nelissen. Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling (Artifact). In Special Issue of the 34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Dagstuhl Artifacts Series (DARTS), Volume 8, Issue 1, pp. 5:1-5:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{aromolo_et_al:DARTS.8.1.5,
  author =	{Aromolo, Federico and Biondi, Alessandro and Nelissen, Geoffrey},
  title =	{{Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling (Artifact)}},
  pages =	{5:1--5:2},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Aromolo, Federico and Biondi, Alessandro and Nelissen, Geoffrey},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.8.1.5},
  URN =		{urn:nbn:de:0030-drops-165012},
  doi =		{10.4230/DARTS.8.1.5},
  annote =	{Keywords: Real-Time Systems, Schedulability Analysis, Self-Suspending Tasks, EDF Scheduling}
}
Document
Artifact
ACETONE: Predictable Programming Framework for ML Applications in Safety-Critical Systems (Artifact)

Authors: Iryna De Albuquerque Silva, Thomas Carle, Adrien Gauffriau, and Claire Pagetti


Abstract
Machine learning applications have been gaining considerable attention in the field of safety-critical systems. Nonetheless, there is up to now no accepted development process that reaches classical safety confidence levels. This is the reason why we have developed a generic programming framework called ACETONE that is compliant with safety objectives (including traceability and WCET computation) for machine learning. More practically, the framework generates C code from a detailed description of off-line trained feed-forward deep neural networks that preserves the semantics of the original trained model and for which the WCET can be assessed with OTAWA. We have compared our results with Keras2c and uTVM with static runtime on a realistic set of benchmarks.

Cite as

Iryna De Albuquerque Silva, Thomas Carle, Adrien Gauffriau, and Claire Pagetti. ACETONE: Predictable Programming Framework for ML Applications in Safety-Critical Systems (Artifact). In Special Issue of the 34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Dagstuhl Artifacts Series (DARTS), Volume 8, Issue 1, pp. 6:1-6:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{dealbuquerquesilva_et_al:DARTS.8.1.6,
  author =	{De Albuquerque Silva, Iryna and Carle, Thomas and Gauffriau, Adrien and Pagetti, Claire},
  title =	{{ACETONE: Predictable Programming Framework for ML Applications in Safety-Critical Systems (Artifact)}},
  pages =	{6:1--6:2},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{De Albuquerque Silva, Iryna and Carle, Thomas and Gauffriau, Adrien and Pagetti, Claire},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.8.1.6},
  URN =		{urn:nbn:de:0030-drops-165023},
  doi =		{10.4230/DARTS.8.1.6},
  annote =	{Keywords: Real-time safety-critical systems, Worst Case Execution Time analysis, Artificial Neural Networks implementation}
}
Document
Artifact
Foundational Response-Time Analysis as Explainable Evidence of Timeliness (Artifact)

Authors: Marco Maida, Sergey Bozhko, and Björn B. Brandenburg


Abstract
This artifact provides the means to validate and reproduce the results of the associated paper “Foundational Response-Time Analysis as Explainable Evidence of Timeliness”. The artifact demonstrates how to (i) generate task sets needed to run the experiments, (ii) prepare and run POET on the generated input, (iii) plot the figures presented in the paper, and (iv) visually inspect the generated certificates.

Cite as

Marco Maida, Sergey Bozhko, and Björn B. Brandenburg. Foundational Response-Time Analysis as Explainable Evidence of Timeliness (Artifact). In Special Issue of the 34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Dagstuhl Artifacts Series (DARTS), Volume 8, Issue 1, pp. 7:1-7:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{maida_et_al:DARTS.8.1.7,
  author =	{Maida, Marco and Bozhko, Sergey and Brandenburg, Bj\"{o}rn B.},
  title =	{{Foundational Response-Time Analysis as Explainable Evidence of Timeliness (Artifact)}},
  pages =	{7:1--7:2},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Maida, Marco and Bozhko, Sergey and Brandenburg, Bj\"{o}rn B.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.8.1.7},
  URN =		{urn:nbn:de:0030-drops-165038},
  doi =		{10.4230/DARTS.8.1.7},
  annote =	{Keywords: hard real-time systems, response-time analysis, uniprocessor, Coq, Prosa, fixed priority, EDF, preemptive, non-preemptive, verification}
}

Filters


Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail