<h2>Dagstuhl Reports, Volume 1, Issue 5, </h2> <ul> <li> <span class="title">Dagstuhl Reports, Volume 1, Issue 5, May 2011, Complete Issue</span> <a class="doi" href="https://doi.org/10.4230/DagRep.1.5">10.4230/DagRep.1.5</a> </li> <li> <span class="title">Dagstuhl Reports, Table of Contents, Volume 1, Issue 5, 2011</span> <a class="doi" href="https://doi.org/10.4230/DagRep.1.5.i">10.4230/DagRep.1.5.i</a> </li> <li> <span class="authors">Kirstie Bellman, Andreas Herkersdorf, and Michael G. Hinchey</span> <span class="title">Organic Computing - Design of Self-Organizing Systems (Dagstuhl Seminar 11181)</span> <a class="doi" href="https://doi.org/10.4230/DagRep.1.5.1">10.4230/DagRep.1.5.1</a> </li> <li> <span class="authors">Andreas Brandstädt, Martin Charles Golumbic, Pinar Heggernes, and Ross McConnell</span> <span class="title">Exploiting graph structure to cope with hard problems (Dagstuhl Seminar 11182)</span> <a class="doi" href="https://doi.org/10.4230/DagRep.1.5.29">10.4230/DagRep.1.5.29</a> </li> <li> <span class="authors">Camil Demetrescu, Michael Kaufmann, Stephen Kobourov, and Petra Mutzel</span> <span class="title">Graph Drawing with Algorithm Engineering Methods (Dagstuhl Seminar 11191)</span> <a class="doi" href="https://doi.org/10.4230/DagRep.1.5.47">10.4230/DagRep.1.5.47</a> </li> <li> <span class="authors">Luc De Raedt, Siegfried Nijssen, Barry O'Sullivan, and Pascal Van Hentenryck</span> <span class="title">Constraint Programming meets Machine Learning and Data Mining (Dagstuhl Seminar 11201)</span> <a class="doi" href="https://doi.org/10.4230/DagRep.1.5.61">10.4230/DagRep.1.5.61</a> </li> <li> <span class="authors">Thomas A. Grandine, Stefanie Hahmann, Jörg Peters, and Wenping Wang</span> <span class="title">Geometric Modeling (Dagstuhl Seminar 11211)</span> <a class="doi" href="https://doi.org/10.4230/DagRep.1.5.84">10.4230/DagRep.1.5.84</a> </li> </ul>
The metadata provided by Dagstuhl Publishing on its webpages, as well as their export formats (such as XML or BibTeX) available at our website, is released under the CC0 1.0 Public Domain Dedication license. That is, you are free to copy, distribute, use, modify, transform, build upon, and produce derived works from our data, even for commercial purposes, all without asking permission. Of course, we are always happy if you provide a link to us as the source of the data.
Read the full CC0 1.0 legal code for the exact terms that apply: https://creativecommons.org/publicdomain/zero/1.0/legalcode
Feedback for Dagstuhl Publishing