<h2>Dagstuhl Reports, Volume 12, Issue 2, </h2> <ul> <li> <span class="title">Dagstuhl Reports, Volume 12, Issue 2, February 2022, Complete Issue</span> <a class="doi" href="https://doi.org/10.4230/DagRep.12.2">10.4230/DagRep.12.2</a> </li> <li> <span class="title">Dagstuhl Reports, Table of Contents, Volume 12, Issue 2, 2022</span> <a class="doi" href="https://doi.org/10.4230/DagRep.12.2.i">10.4230/DagRep.12.2.i</a> </li> <li> <span class="authors">Erich Grädel, Phokion G. Kolaitis, Marc Noy, and Matthias Naaf</span> <span class="title">Logic and Random Discrete Structures (Dagstuhl Seminar 22061)</span> <a class="doi" href="https://doi.org/10.4230/DagRep.12.2.1">10.4230/DagRep.12.2.1</a> </li> <li> <span class="authors">Maike Buchin, Anna Lubiw, Arnaud de Mesmay, Saul Schleimer, and Florestan Brunck</span> <span class="title">Computation and Reconfiguration in Low-Dimensional Topological Spaces (Dagstuhl Seminar 22062)</span> <a class="doi" href="https://doi.org/10.4230/DagRep.12.2.17">10.4230/DagRep.12.2.17</a> </li> <li> <span class="authors">Erika Abraham, James H. Davenport, Matthew England, and Alberto Griggio</span> <span class="title">New Perspectives in Symbolic Computation and Satisfiability Checking (Dagstuhl Seminar 22072)</span> <a class="doi" href="https://doi.org/10.4230/DagRep.12.2.67">10.4230/DagRep.12.2.67</a> </li> <li> <span class="authors">Anne Auger, Carlos M. Fonseca, Tobias Friedrich, Johannes Lengler, and Armand Gissler</span> <span class="title">Theory of Randomized Optimization Heuristics (Dagstuhl Seminar 22081)</span> <a class="doi" href="https://doi.org/10.4230/DagRep.12.2.87">10.4230/DagRep.12.2.87</a> </li> <li> <span class="authors">Meinard Müller, Rachel Bittner, Juhan Nam, Michael Krause, and Yigitcan Özer</span> <span class="title">Deep Learning and Knowledge Integration for Music Audio Analysis (Dagstuhl Seminar 22082)</span> <a class="doi" href="https://doi.org/10.4230/DagRep.12.2.103">10.4230/DagRep.12.2.103</a> </li> <li> <span class="authors">Claudia Clopath, Ruben De Winne, and Tom Schaul</span> <span class="title">AI for the Social Good (Dagstuhl Seminar 22091)</span> <a class="doi" href="https://doi.org/10.4230/DagRep.12.2.134">10.4230/DagRep.12.2.134</a> </li> </ul>
The metadata provided by Dagstuhl Publishing on its webpages, as well as their export formats (such as XML or BibTeX) available at our website, is released under the CC0 1.0 Public Domain Dedication license. That is, you are free to copy, distribute, use, modify, transform, build upon, and produce derived works from our data, even for commercial purposes, all without asking permission. Of course, we are always happy if you provide a link to us as the source of the data.
Read the full CC0 1.0 legal code for the exact terms that apply: https://creativecommons.org/publicdomain/zero/1.0/legalcode
Feedback for Dagstuhl Publishing