<h2>Dagstuhl Reports, Volume 13, Issue 3, </h2> <ul> <li> <span class="title">Dagstuhl Reports, Volume 13, Issue 3, March 2023, Complete Issue</span> <a class="doi" href="https://doi.org/10.4230/DagRep.13.3">10.4230/DagRep.13.3</a> </li> <li> <span class="title">Dagstuhl Reports, Table of Contents, Volume 13, Issue 3, 2023</span> <a class="doi" href="https://doi.org/10.4230/DagRep.13.3.i">10.4230/DagRep.13.3.i</a> </li> <li> <span class="authors">Karthikeyan Bhargavan, Jonathan Protzenko, Andreas Rossberg, and Deian Stefan</span> <span class="title">Foundations of WebAssembly (Dagstuhl Seminar 23101)</span> <a class="doi" href="https://doi.org/10.4230/DagRep.13.3.1">10.4230/DagRep.13.3.1</a> </li> <li> <span class="authors">Anna Gál, Meena Mahajan, Rahul Santhanam, Till Tantau, and Manaswi Paraashar</span> <span class="title">Computational Complexity of Discrete Problems (Dagstuhl Seminar 23111)</span> <a class="doi" href="https://doi.org/10.4230/DagRep.13.3.17">10.4230/DagRep.13.3.17</a> </li> <li> <span class="authors">Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey</span> <span class="title">Unifying Formal Methods for Trustworthy Distributed Systems (Dagstuhl Seminar 23112)</span> <a class="doi" href="https://doi.org/10.4230/DagRep.13.3.32">10.4230/DagRep.13.3.32</a> </li> <li> <span class="authors">David Bevan, Miklós Bóna, and István Miklós</span> <span class="title">Pattern Avoidance, Statistical Mechanics and Computational Complexity (Dagstuhl Seminar 23121)</span> <a class="doi" href="https://doi.org/10.4230/DagRep.13.3.49">10.4230/DagRep.13.3.49</a> </li> <li> <span class="authors">Tinne Tuytelaars, Bing Liu, Vincenzo Lomonaco, Gido van de Ven, and Andrea Cossu</span> <span class="title">Deep Continual Learning (Dagstuhl Seminar 23122)</span> <a class="doi" href="https://doi.org/10.4230/DagRep.13.3.74">10.4230/DagRep.13.3.74</a> </li> <li> <span class="authors">Marcel Böhme, Maria Christakis, Rohan Padhye, Kostya Serebryany, Andreas Zeller, and Hasan Ferit Eniser</span> <span class="title">Software Bug Detection: Challenges and Synergies (Dagstuhl Seminar 23131)</span> <a class="doi" href="https://doi.org/10.4230/DagRep.13.3.92">10.4230/DagRep.13.3.92</a> </li> <li> <span class="authors">Peer-Timo Bremer, Brian Spears, Tom Gibbs, and Michael Bussmann</span> <span class="title">AI-Augmented Facilities: Bridging Experiment and Simulation with ML (Dagstuhl Seminar 23132)</span> <a class="doi" href="https://doi.org/10.4230/DagRep.13.3.106">10.4230/DagRep.13.3.106</a> </li> </ul>
The metadata provided by Dagstuhl Publishing on its webpages, as well as their export formats (such as XML or BibTeX) available at our website, is released under the CC0 1.0 Public Domain Dedication license. That is, you are free to copy, distribute, use, modify, transform, build upon, and produce derived works from our data, even for commercial purposes, all without asking permission. Of course, we are always happy if you provide a link to us as the source of the data.
Read the full CC0 1.0 legal code for the exact terms that apply: https://creativecommons.org/publicdomain/zero/1.0/legalcode
Feedback for Dagstuhl Publishing