HTML Export for Dagstuhl Seminar Proceedings, Volume 10302

Copy to Clipboard Download

<h2>Dagstuhl Seminar Proceedings, Volume 10302, </h2>
<ul>
<li>
    <span class="authors">Barbara Hammer, Pascal Hitzler, Wolfgang Maass, and Marc Toussaint</span>
    <span class="title">10302 Abstracts Collection – Learning paradigms in dynamic environments</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.10302.1">10.4230/DagSemProc.10302.1</a>
</li>
<li>
    <span class="authors">Barbara Hammer, Pascal Hitzler, Wolfgang Maass, and Marc Toussaint</span>
    <span class="title">10302 Summary – Learning paradigms in dynamic environments</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.10302.2">10.4230/DagSemProc.10302.2</a>
</li>
<li>
    <span class="authors">Artur S. d&#039;Avila Garcez</span>
    <span class="title">Neurons and Symbols: A Manifesto</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.10302.3">10.4230/DagSemProc.10302.3</a>
</li>
<li>
    <span class="authors">Peter Tino</span>
    <span class="title">One-shot Learning of Poisson Distributions in fast changing environments</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.10302.4">10.4230/DagSemProc.10302.4</a>
</li>
<li>
    <span class="authors">Barbara Hammer, Kerstin Bunte, and Michael Biehl</span>
    <span class="title">Some steps towards a general principle for dimensionality reduction mappings</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.10302.5">10.4230/DagSemProc.10302.5</a>
</li>
<li>
    <span class="authors">Marc Toussaint</span>
    <span class="title">Why deterministic logic is hard to learn but Statistical Relational Learning works</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.10302.6">10.4230/DagSemProc.10302.6</a>
</li>
</ul>

The metadata provided by Dagstuhl Publishing on its webpages, as well as their export formats (such as XML or BibTeX) available at our website, is released under the CC0 1.0 Public Domain Dedication license. That is, you are free to copy, distribute, use, modify, transform, build upon, and produce derived works from our data, even for commercial purposes, all without asking permission. Of course, we are always happy if you provide a link to us as the source of the data.

Read the full CC0 1.0 legal code for the exact terms that apply: https://creativecommons.org/publicdomain/zero/1.0/legalcode

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail