<h2>Dagstuhl Seminar Proceedings, Volume 4461, </h2> <ul> <li> <span class="authors">Jürgen Branke, Deb Kalyanmoy, Kaisa Miettinen, and Ralph E. Steuer</span> <span class="title">04461 Abstracts Collection – Practical Approaches to Multi-Objective Optimization</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.1">10.4230/DagSemProc.04461.1</a> </li> <li> <span class="authors">Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen, and Ralph E. Steuer</span> <span class="title">04461 Summary – Practical Approaches to Multi-Criterion Optimization</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.2">10.4230/DagSemProc.04461.2</a> </li> <li> <span class="authors">Jörg Fliege, Christoph Heermann, and Bernd Weyers</span> <span class="title">A New Adaptive Algorithm for Convex Quadratic Multicriteria Optimization</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.3">10.4230/DagSemProc.04461.3</a> </li> <li> <span class="authors">Sanaz Mostaghim and Jürgen Teich</span> <span class="title">A New Approach on Many Objective Diversity Measurement</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.4">10.4230/DagSemProc.04461.4</a> </li> <li> <span class="authors">Kalyanmoy Deb</span> <span class="title">A Tutorial on Evolutionary Multi-Objective Optimization (EMO)</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.5">10.4230/DagSemProc.04461.5</a> </li> <li> <span class="authors">Marco Laumanns, Lothar Thiele, and Eckart Zitzler</span> <span class="title">An Adaptive Scheme to Generate the Pareto Front Based on the Epsilon-Constraint Method</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.6">10.4230/DagSemProc.04461.6</a> </li> <li> <span class="authors">Thomas Hanne</span> <span class="title">Application Issues for Multiobjective Evolutionary Algorithms</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.7">10.4230/DagSemProc.04461.7</a> </li> <li> <span class="authors">Alexander Lotov</span> <span class="title">Approximation and Visualization of Pareto Frontier in the Framework of Classical Approach to Multi-Objective Optimization</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.8">10.4230/DagSemProc.04461.8</a> </li> <li> <span class="authors">Carlos A. Coello Coello</span> <span class="title">Current Status of the EMOO Repository, Including Current and Future Research Trends</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.9">10.4230/DagSemProc.04461.9</a> </li> <li> <span class="authors">Hisao Ishibuchi</span> <span class="title">Effects of Crossover Operations on the Performance of EMO Algorithms</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.10">10.4230/DagSemProc.04461.10</a> </li> <li> <span class="authors">Felix Streichert, Holger Ulmer, and Andreas Zell</span> <span class="title">Hybrid Representations for Composition Optimization and Parallelizing MOEAs</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.11">10.4230/DagSemProc.04461.11</a> </li> <li> <span class="authors">Roman Slowinski, Salvatore Greco, and Vincent Mousseau</span> <span class="title">Multi-criteria ranking of a finite set of alternatives using ordinal regression and additive utility functions - a new UTA-GMS method</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.12">10.4230/DagSemProc.04461.12</a> </li> <li> <span class="authors">Hirotaka Nakayama</span> <span class="title">Multi-objective Optimization and its Engineering Applications</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.13">10.4230/DagSemProc.04461.13</a> </li> <li> <span class="authors">Carlos M. Fonseca and Peter J. Fleming</span> <span class="title">Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.14">10.4230/DagSemProc.04461.14</a> </li> <li> <span class="authors">Enrico Rigoni and Silvia Poles</span> <span class="title">NBI and MOGA-II, two complementary algorithms for Multi-Objective optimizations</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.15">10.4230/DagSemProc.04461.15</a> </li> <li> <span class="authors">Oliver Schütze, Alessandro Dell'Aere, and Michael Dellnitz</span> <span class="title">On Continuation Methods for the Numerical Treatment of Multi-Objective Optimization Problems</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.16">10.4230/DagSemProc.04461.16</a> </li> <li> <span class="authors">Pradyumn Kumar Shukla, Joydeep Dutta, and Kalyanmoy Deb</span> <span class="title">On Properly Pareto Optimal Solutions</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.17">10.4230/DagSemProc.04461.17</a> </li> <li> <span class="authors">Nirupam Chakraborti, Barrenkala Siva Kumar, Satish V. Babu, Sri Subhrangshu Moitra, and Ananya Mukhopadhyay</span> <span class="title">Optimizing Surface Profiles during Hot Rolling: A Genetic Algorithms based Multi-objective Analysis</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.18">10.4230/DagSemProc.04461.18</a> </li> <li> <span class="authors">Oliver Giel</span> <span class="title">Runtime Analysis of a Simple Multi-Objective Evolutionary Algorithm</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.19">10.4230/DagSemProc.04461.19</a> </li> <li> <span class="authors">Daisuke Sasaki and Shigeru Obayashi</span> <span class="title">Visualization of Global Trade-Offs in Aerodynamic Problems by ARMOGAs</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.04461.20">10.4230/DagSemProc.04461.20</a> </li> </ul>
The metadata provided by Dagstuhl Publishing on its webpages, as well as their export formats (such as XML or BibTeX) available at our website, is released under the CC0 1.0 Public Domain Dedication license. That is, you are free to copy, distribute, use, modify, transform, build upon, and produce derived works from our data, even for commercial purposes, all without asking permission. Of course, we are always happy if you provide a link to us as the source of the data.
Read the full CC0 1.0 legal code for the exact terms that apply: https://creativecommons.org/publicdomain/zero/1.0/legalcode
Feedback for Dagstuhl Publishing