<h2>Dagstuhl Seminar Proceedings, Volume 7161, </h2> <ul> <li> <span class="authors">Luc De Raedt, Thomas Dietterich, Lise Getoor, Kristian Kersting, and Stephen H. Muggleton</span> <span class="title">07161 Abstracts Collection – Probabilistic, Logical and Relational Learning - A Further Synthesis</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.07161.1">10.4230/DagSemProc.07161.1</a> </li> <li> <span class="authors">Barbara Hammer, Alessio Micheli, and Alessandro Sperduti</span> <span class="title">A general framework for unsupervised preocessing of structured data</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.07161.2">10.4230/DagSemProc.07161.2</a> </li> <li> <span class="authors">Sriraam Natarajan, Prasad Tadepalli, and Alan Fern</span> <span class="title">Exploiting prior knowledge in Intelligent Assistants - Combining relational models with hierarchies</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.07161.3">10.4230/DagSemProc.07161.3</a> </li> <li> <span class="authors">Ashwin Deshpande, Brian Milch, Luke S. Zettlemoyer, and Leslie Pack Kaelbling</span> <span class="title">Learning Probabilistic Relational Dynamics for Multiple Tasks</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.07161.4">10.4230/DagSemProc.07161.4</a> </li> <li> <span class="authors">Luke S. Zettlemoyer, Hanna M. Pasula, and Leslie Pack Kaelbling</span> <span class="title">Logical Particle Filtering</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.07161.5">10.4230/DagSemProc.07161.5</a> </li> <li> <span class="authors">Pedro Domingos and Parag Singla</span> <span class="title">Markov Logic in Infinite Domains</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.07161.6">10.4230/DagSemProc.07161.6</a> </li> <li> <span class="authors">James Cussens</span> <span class="title">Model equivalence of PRISM programs</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.07161.7">10.4230/DagSemProc.07161.7</a> </li> <li> <span class="authors">Peter Flach and Edson Matsubara</span> <span class="title">On classification, ranking, and probability estimation</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.07161.8">10.4230/DagSemProc.07161.8</a> </li> <li> <span class="authors">Nicolas Baskiotis and Michele Sebag</span> <span class="title">Structural Sampling for Statistical Software Testing</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.07161.9">10.4230/DagSemProc.07161.9</a> </li> <li> <span class="authors">Taisuke Sato, Yoshitaka Kameya, and Kenichi Kurihara</span> <span class="title">Variational Bayes via Propositionalization</span> <a class="doi" href="https://doi.org/10.4230/DagSemProc.07161.10">10.4230/DagSemProc.07161.10</a> </li> </ul>
The metadata provided by Dagstuhl Publishing on its webpages, as well as their export formats (such as XML or BibTeX) available at our website, is released under the CC0 1.0 Public Domain Dedication license. That is, you are free to copy, distribute, use, modify, transform, build upon, and produce derived works from our data, even for commercial purposes, all without asking permission. Of course, we are always happy if you provide a link to us as the source of the data.
Read the full CC0 1.0 legal code for the exact terms that apply: https://creativecommons.org/publicdomain/zero/1.0/legalcode
Feedback for Dagstuhl Publishing