HTML Export for Dagstuhl Seminar Proceedings, Volume 9181

Copy to Clipboard Download

<h2>Dagstuhl Seminar Proceedings, Volume 9181, </h2>
<ul>
<li>
    <span class="authors">Jürgen Branke, Barry L. Nelson, Warren Buckler Powell, and Thomas J. Santner</span>
    <span class="title">09181 Abstracts Collection – Sampling-based Optimization in the Presence of Uncertainty</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.09181.1">10.4230/DagSemProc.09181.1</a>
</li>
<li>
    <span class="authors">Jürgen Branke, Barry L. Nelson, Warren Buckler Powell, and Thomas J. Santner</span>
    <span class="title">09181 Executive Summary – Sampling-based Optimization in the Presence of Uncertainty</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.09181.2">10.4230/DagSemProc.09181.2</a>
</li>
<li>
    <span class="authors">Chun-Hung Chen, Liu Hong, Paul B. Kantor, David P. Morton, Juta Pichitlamken, and Matthias Seeger</span>
    <span class="title">09181 Working Group on Hybridization between R&amp;S, DoE and Optimization</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.09181.3">10.4230/DagSemProc.09181.3</a>
</li>
<li>
    <span class="authors">Matthias Seeger and Hannes Nickisch</span>
    <span class="title">Large Scale Variational Inference and Experimental Design for Sparse Generalized Linear Models</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.09181.4">10.4230/DagSemProc.09181.4</a>
</li>
<li>
    <span class="authors">Thomas Bartz-Beielstein</span>
    <span class="title">Sequential Parameter Optimization</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.09181.5">10.4230/DagSemProc.09181.5</a>
</li>
</ul>

The metadata provided by Dagstuhl Publishing on its webpages, as well as their export formats (such as XML or BibTeX) available at our website, is released under the CC0 1.0 Public Domain Dedication license. That is, you are free to copy, distribute, use, modify, transform, build upon, and produce derived works from our data, even for commercial purposes, all without asking permission. Of course, we are always happy if you provide a link to us as the source of the data.

Read the full CC0 1.0 legal code for the exact terms that apply: https://creativecommons.org/publicdomain/zero/1.0/legalcode

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail