<h2>LIPIcs, Volume 232, TQC 2022</h2> <ul> <li> <span class="authors">François Le Gall and Tomoyuki Morimae</span> <span class="title">LIPIcs, Volume 232, TQC 2022, Complete Volume</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.TQC.2022">10.4230/LIPIcs.TQC.2022</a> </li> <li> <span class="authors">François Le Gall and Tomoyuki Morimae</span> <span class="title">Front Matter, Table of Contents, Preface, Conference Organization</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.TQC.2022.0">10.4230/LIPIcs.TQC.2022.0</a> </li> <li> <span class="authors">Ashley Montanaro and Changpeng Shao</span> <span class="title">Quantum Algorithms for Learning a Hidden Graph</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.TQC.2022.1">10.4230/LIPIcs.TQC.2022.1</a> </li> <li> <span class="authors">João F. Doriguello, Alessandro Luongo, Jinge Bao, Patrick Rebentrost, and Miklos Santha</span> <span class="title">Quantum Algorithm for Stochastic Optimal Stopping Problems with Applications in Finance</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.TQC.2022.2">10.4230/LIPIcs.TQC.2022.2</a> </li> <li> <span class="authors">Srinivasan Arunachalam, Sergey Bravyi, Chinmay Nirkhe, and Bryan O'Gorman</span> <span class="title">The Parametrized Complexity of Quantum Verification</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.TQC.2022.3">10.4230/LIPIcs.TQC.2022.3</a> </li> <li> <span class="authors">Steven T. Flammia</span> <span class="title">Averaged Circuit Eigenvalue Sampling</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.TQC.2022.4">10.4230/LIPIcs.TQC.2022.4</a> </li> <li> <span class="authors">Aleks Kissinger, John van de Wetering, and Renaud Vilmart</span> <span class="title">Classical Simulation of Quantum Circuits with Partial and Graphical Stabiliser Decompositions</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.TQC.2022.5">10.4230/LIPIcs.TQC.2022.5</a> </li> <li> <span class="authors">Jop Briët and Francisco Escudero Gutiérrez</span> <span class="title">On Converses to the Polynomial Method</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.TQC.2022.6">10.4230/LIPIcs.TQC.2022.6</a> </li> <li> <span class="authors">Joao Basso, Edward Farhi, Kunal Marwaha, Benjamin Villalonga, and Leo Zhou</span> <span class="title">The Quantum Approximate Optimization Algorithm at High Depth for MaxCut on Large-Girth Regular Graphs and the Sherrington-Kirkpatrick Model</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.TQC.2022.7">10.4230/LIPIcs.TQC.2022.7</a> </li> <li> <span class="authors">Sarah A. Osborn and Jamie Sikora</span> <span class="title">A Constant Lower Bound for Any Quantum Protocol for Secure Function Evaluation</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.TQC.2022.8">10.4230/LIPIcs.TQC.2022.8</a> </li> <li> <span class="authors">Suchetan Dontha, Shi Jie Samuel Tan, Stephen Smith, Sangheon Choi, and Matthew Coudron</span> <span class="title">Approximating Output Probabilities of Shallow Quantum Circuits Which Are Geometrically-Local in Any Fixed Dimension</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.TQC.2022.9">10.4230/LIPIcs.TQC.2022.9</a> </li> <li> <span class="authors">Harry Buhrman, Bruno Loff, Subhasree Patro, and Florian Speelman</span> <span class="title">Memory Compression with Quantum Random-Access Gates</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.TQC.2022.10">10.4230/LIPIcs.TQC.2022.10</a> </li> <li> <span class="authors">Vladislavs Kļevickis, Krišjānis Prūsis, and Jevgēnijs Vihrovs</span> <span class="title">Quantum Speedups for Treewidth</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.TQC.2022.11">10.4230/LIPIcs.TQC.2022.11</a> </li> <li> <span class="authors">Andrew N. Glaudell, Neil J. Ross, John van de Wetering, and Lia Yeh</span> <span class="title">Qutrit Metaplectic Gates Are a Subset of Clifford+T</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.TQC.2022.12">10.4230/LIPIcs.TQC.2022.12</a> </li> </ul>
The metadata provided by Dagstuhl Publishing on its webpages, as well as their export formats (such as XML or BibTeX) available at our website, is released under the CC0 1.0 Public Domain Dedication license. That is, you are free to copy, distribute, use, modify, transform, build upon, and produce derived works from our data, even for commercial purposes, all without asking permission. Of course, we are always happy if you provide a link to us as the source of the data.
Read the full CC0 1.0 legal code for the exact terms that apply: https://creativecommons.org/publicdomain/zero/1.0/legalcode
Feedback for Dagstuhl Publishing