HTML Export for TYPES 2023

Copy to Clipboard Download

<h2>LIPIcs, Volume 303, TYPES 2023</h2>
<ul>
<li>
    <span class="authors">Delia Kesner, Eduardo Hermo Reyes, and Benno van den Berg</span>
    <span class="title">LIPIcs, Volume 303, TYPES 2023, Complete Volume</span>
    <a class="doi" href="https://doi.org/10.4230/LIPIcs.TYPES.2023">10.4230/LIPIcs.TYPES.2023</a>
</li>
<li>
    <span class="authors">Delia Kesner, Eduardo Hermo Reyes, and Benno van den Berg</span>
    <span class="title">Front Matter, Table of Contents, Preface, Conference Organization</span>
    <a class="doi" href="https://doi.org/10.4230/LIPIcs.TYPES.2023.0">10.4230/LIPIcs.TYPES.2023.0</a>
</li>
<li>
    <span class="authors">Jelle Wemmenhove, Cosmin Manea, and Jim Portegies</span>
    <span class="title">Classification of Covering Spaces and Canonical Change of Basepoint</span>
    <a class="doi" href="https://doi.org/10.4230/LIPIcs.TYPES.2023.1">10.4230/LIPIcs.TYPES.2023.1</a>
</li>
<li>
    <span class="authors">Andrej Dudenhefner, Christoph Stahl, Constantin Chaumet, Felix Laarmann, and Jakob Rehof</span>
    <span class="title">Finite Combinatory Logic with Predicates</span>
    <a class="doi" href="https://doi.org/10.4230/LIPIcs.TYPES.2023.2">10.4230/LIPIcs.TYPES.2023.2</a>
</li>
<li>
    <span class="authors">Greta Coraglia and Jacopo Emmenegger</span>
    <span class="title">Categorical Models of Subtyping</span>
    <a class="doi" href="https://doi.org/10.4230/LIPIcs.TYPES.2023.3">10.4230/LIPIcs.TYPES.2023.3</a>
</li>
<li>
    <span class="authors">Joris Ceulemans, Andreas Nuyts, and Dominique Devriese</span>
    <span class="title">A Sound and Complete Substitution Algorithm for Multimode Type Theory</span>
    <a class="doi" href="https://doi.org/10.4230/LIPIcs.TYPES.2023.4">10.4230/LIPIcs.TYPES.2023.4</a>
</li>
<li>
    <span class="authors">Michał J. Gajda</span>
    <span class="title">Consistent Ultrafinitist Logic</span>
    <a class="doi" href="https://doi.org/10.4230/LIPIcs.TYPES.2023.5">10.4230/LIPIcs.TYPES.2023.5</a>
</li>
<li>
    <span class="authors">Matthias Eberl</span>
    <span class="title">A Reflection Principle for Potential Infinite Models of Type Theory</span>
    <a class="doi" href="https://doi.org/10.4230/LIPIcs.TYPES.2023.6">10.4230/LIPIcs.TYPES.2023.6</a>
</li>
</ul>

The metadata provided by Dagstuhl Publishing on its webpages, as well as their export formats (such as XML or BibTeX) available at our website, is released under the CC0 1.0 Public Domain Dedication license. That is, you are free to copy, distribute, use, modify, transform, build upon, and produce derived works from our data, even for commercial purposes, all without asking permission. Of course, we are always happy if you provide a link to us as the source of the data.

Read the full CC0 1.0 legal code for the exact terms that apply: https://creativecommons.org/publicdomain/zero/1.0/legalcode

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail