<h2>LIPIcs, Volume 307, CP 2024</h2> <ul> <li> <span class="authors">Paul Shaw</span> <span class="title">LIPIcs, Volume 307, CP 2024, Complete Volume</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024">10.4230/LIPIcs.CP.2024</a> </li> <li> <span class="authors">Paul Shaw</span> <span class="title">Front Matter, Table of Contents, Preface, Conference Organization</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.0">10.4230/LIPIcs.CP.2024.0</a> </li> <li> <span class="authors">Ian P. Gent</span> <span class="title">Solving Patience and Solitaire Games with Good Old Fashioned AI (Invited Talk)</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.1">10.4230/LIPIcs.CP.2024.1</a> </li> <li> <span class="authors">Francesca Rossi</span> <span class="title">Thinking Fast and Slow in AI: A Cognitive Architecture to Augment Both AI and Human Reasoning (Invited Talk)</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.2">10.4230/LIPIcs.CP.2024.2</a> </li> <li> <span class="authors">Markus Anders, Sofia Brenner, and Gaurav Rattan</span> <span class="title">The Complexity of Symmetry Breaking Beyond Lex-Leader</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.3">10.4230/LIPIcs.CP.2024.3</a> </li> <li> <span class="authors">Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter Vandesande</span> <span class="title">Certifying Without Loss of Generality Reasoning in Solution-Improving Maximum Satisfiability</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.4">10.4230/LIPIcs.CP.2024.4</a> </li> <li> <span class="authors">Zhihan Chen, Peng Lin, Hao Hu, and Shaowei Cai</span> <span class="title">ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.5">10.4230/LIPIcs.CP.2024.5</a> </li> <li> <span class="authors">Xiamin Chen, Zhendong Lei, and Pinyan Lu</span> <span class="title">Deep Cooperation of Local Search and Unit Propagation Techniques</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.6">10.4230/LIPIcs.CP.2024.6</a> </li> <li> <span class="authors">Samuel Cloutier and Claude-Guy Quimper</span> <span class="title">Cumulative Scheduling with Calendars and Overtime</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.7">10.4230/LIPIcs.CP.2024.7</a> </li> <li> <span class="authors">João Cortes, Inês Lynce, and Vasco Manquinho</span> <span class="title">Slide&Drill, a New Approach for Multi-Objective Combinatorial Optimization</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.8">10.4230/LIPIcs.CP.2024.8</a> </li> <li> <span class="authors">Emir Demirović, Ciaran McCreesh, Matthew J. McIlree, Jakob Nordström, Andy Oertel, and Konstantin Sidorov</span> <span class="title">Pseudo-Boolean Reasoning About States and Transitions to Certify Dynamic Programming and Decision Diagram Algorithms</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.9">10.4230/LIPIcs.CP.2024.9</a> </li> <li> <span class="authors">Alexandre Dubray, Pierre Schaus, and Siegfried Nijssen</span> <span class="title">Anytime Weighted Model Counting with Approximation Guarantees for Probabilistic Inference</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.10">10.4230/LIPIcs.CP.2024.10</a> </li> <li> <span class="authors">Maarten Flippo, Konstantin Sidorov, Imko Marijnissen, Jeff Smits, and Emir Demirović</span> <span class="title">A Multi-Stage Proof Logging Framework to Certify the Correctness of CP Solvers</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.11">10.4230/LIPIcs.CP.2024.11</a> </li> <li> <span class="authors">Adam Francis Green, J. Christopher Beck, and Amanda Coles</span> <span class="title">Using Constraint Programming for Disjunctive Scheduling in Temporal AI Planning</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.12">10.4230/LIPIcs.CP.2024.12</a> </li> <li> <span class="authors">Cunjing Ge and Armin Biere</span> <span class="title">Improved Bounds of Integer Solution Counts via Volume and Extending to Mixed-Integer Linear Constraints</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.13">10.4230/LIPIcs.CP.2024.13</a> </li> <li> <span class="authors">Panteleimon Iosif, Nikolaos Ploskas, Kostas Stergiou, and Dimosthenis C. Tsouros</span> <span class="title">A CP/LS Heuristic Method for Maxmin and Minmax Location Problems with Distance Constraints</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.14">10.4230/LIPIcs.CP.2024.14</a> </li> <li> <span class="authors">Peter Jonsson, Victor Lagerkvist, and George Osipov</span> <span class="title">CSPs with Few Alien Constraints</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.15">10.4230/LIPIcs.CP.2024.15</a> </li> <li> <span class="authors">Jihye Jung, Kevin Dalmeijer, and Pascal Van Hentenryck</span> <span class="title">A New Optimization Model for Multiple-Control Toffoli Quantum Circuit Design</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.16">10.4230/LIPIcs.CP.2024.16</a> </li> <li> <span class="authors">Artem Kaznatcheev and Melle van Marle</span> <span class="title">Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.17">10.4230/LIPIcs.CP.2024.17</a> </li> <li> <span class="authors">Duc Anh Le, Stéphanie Roussel, Christophe Lecoutre, and Anouck Chan</span> <span class="title">Learning Effect and Compound Activities in High Multiplicity RCPSP: Application to Satellite Production</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.18">10.4230/LIPIcs.CP.2024.18</a> </li> <li> <span class="authors">Peng Lin, Mengchuan Zou, and Shaowei Cai</span> <span class="title">An Efficient Local Search Solver for Mixed Integer Programming</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.19">10.4230/LIPIcs.CP.2024.19</a> </li> <li> <span class="authors">Kostis Michailidis, Dimos Tsouros, and Tias Guns</span> <span class="title">Constraint Modelling with LLMs Using In-Context Learning</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.20">10.4230/LIPIcs.CP.2024.20</a> </li> <li> <span class="authors">Mohsen Nafar and Michael Römer</span> <span class="title">Strengthening Relaxed Decision Diagrams for Maximum Independent Set Problem: Novel Variable Ordering and Merge Heuristics</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.21">10.4230/LIPIcs.CP.2024.21</a> </li> <li> <span class="authors">Augustin Parjadis, Quentin Cappart, Bistra Dilkina, Aaron Ferber, and Louis-Martin Rousseau</span> <span class="title">Learning Lagrangian Multipliers for the Travelling Salesman Problem</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.22">10.4230/LIPIcs.CP.2024.22</a> </li> <li> <span class="authors">Xavier Pucel and Stéphanie Roussel</span> <span class="title">Constraint Programming Model for Assembly Line Balancing and Scheduling with Walking Workers and Parallel Stations</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.23">10.4230/LIPIcs.CP.2024.23</a> </li> <li> <span class="authors">Ben Rachmut, Roie Zivan, and William Yeoh</span> <span class="title">Latency-Aware 2-Opt Monotonic Local Search for Distributed Constraint Optimization</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.24">10.4230/LIPIcs.CP.2024.24</a> </li> <li> <span class="authors">Florian Régin, Elisabetta De Maria, and Alexandre Bonlarron</span> <span class="title">Combining Constraint Programming Reasoning with Large Language Model Predictions</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.25">10.4230/LIPIcs.CP.2024.25</a> </li> <li> <span class="authors">André Schidler and Stefan Szeider</span> <span class="title">Structure-Guided Local Improvement for Maximum Satisfiability</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.26">10.4230/LIPIcs.CP.2024.26</a> </li> <li> <span class="authors">Margaux Schmied and Jean-Charles Régin</span> <span class="title">Efficient Implementation of the Global Cardinality Constraint with Costs</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.27">10.4230/LIPIcs.CP.2024.27</a> </li> <li> <span class="authors">Fabio Tardivo, Laurent Michel, and Enrico Pontelli</span> <span class="title">CP for Bin Packing with Multi-Core and GPUs</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.28">10.4230/LIPIcs.CP.2024.28</a> </li> <li> <span class="authors">Wout Vanroose, Ignace Bleukx, Jo Devriendt, Dimos Tsouros, Hélène Verhaeghe, and Tias Guns</span> <span class="title">Mutational Fuzz Testing for Constraint Modeling Systems</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.29">10.4230/LIPIcs.CP.2024.29</a> </li> <li> <span class="authors">Hélène Verhaeghe, Quentin Cappart, Gilles Pesant, and Claude-Guy Quimper</span> <span class="title">Learning Precedences for Scheduling Problems with Graph Neural Networks</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.30">10.4230/LIPIcs.CP.2024.30</a> </li> <li> <span class="authors">Oleg Zaikin</span> <span class="title">Inverting Step-Reduced SHA-1 and MD5 by Parameterized SAT Solvers</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.31">10.4230/LIPIcs.CP.2024.31</a> </li> <li> <span class="authors">Jiachen Zhang and J. Christopher Beck</span> <span class="title">Solving LBBD Master Problems with Constraint Programming and Domain-Independent Dynamic Programming</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.32">10.4230/LIPIcs.CP.2024.32</a> </li> <li> <span class="authors">Roie Zivan, Shiraz Regev, and William Yeoh</span> <span class="title">Ex-Ante Constraint Elicitation in Incomplete DCOPs</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.33">10.4230/LIPIcs.CP.2024.33</a> </li> <li> <span class="authors">Sami Cherif, Heythem Sattoutah, Chu-Min Li, Corinne Lucet, and Laure Brisoux-Devendeville</span> <span class="title">Minimizing Working-Group Conflicts in Conference Session Scheduling Through Maximum Satisfiability (Short Paper)</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.34">10.4230/LIPIcs.CP.2024.34</a> </li> <li> <span class="authors">Jorke M. de Vlas</span> <span class="title">On the Complexity of Integer Programming with Fixed-Coefficient Scaling (Short Paper)</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.35">10.4230/LIPIcs.CP.2024.35</a> </li> <li> <span class="authors">Augustin Delecluse and Pierre Schaus</span> <span class="title">Black-Box Value Heuristics for Solving Optimization Problems with Constraint Programming (Short Paper)</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.36">10.4230/LIPIcs.CP.2024.36</a> </li> <li> <span class="authors">Markus Kirchweger and Stefan Szeider</span> <span class="title">Computing Small Rainbow Cycle Numbers with SAT Modulo Symmetries (Short Paper)</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.37">10.4230/LIPIcs.CP.2024.37</a> </li> <li> <span class="authors">Erdem Kuş, Özgür Akgün, Nguyen Dang, and Ian Miguel</span> <span class="title">Frugal Algorithm Selection (Short Paper)</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.38">10.4230/LIPIcs.CP.2024.38</a> </li> <li> <span class="authors">Filipe Souza, Diarmuid Grimes, and Barry O'Sullivan</span> <span class="title">An Investigation of Generic Approaches to Large Neighbourhood Search (Short Paper)</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.39">10.4230/LIPIcs.CP.2024.39</a> </li> <li> <span class="authors">Neng-Fa Zhou</span> <span class="title">Encoding the Hamiltonian Cycle Problem into SAT Based on Vertex Elimination (Short Paper)</span> <a class="doi" href="https://doi.org/10.4230/LIPIcs.CP.2024.40">10.4230/LIPIcs.CP.2024.40</a> </li> </ul>
The metadata provided by Dagstuhl Publishing on its webpages, as well as their export formats (such as XML or BibTeX) available at our website, is released under the CC0 1.0 Public Domain Dedication license. That is, you are free to copy, distribute, use, modify, transform, build upon, and produce derived works from our data, even for commercial purposes, all without asking permission. Of course, we are always happy if you provide a link to us as the source of the data.
Read the full CC0 1.0 legal code for the exact terms that apply: https://creativecommons.org/publicdomain/zero/1.0/legalcode
Feedback for Dagstuhl Publishing