8 Search Results for "Carette, Jacques"


Document
Scott’s Representation Theorem and the Univalent Karoubi Envelope

Authors: Arnoud van der Leer, Kobe Wullaert, and Benedikt Ahrens

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Lambek and Scott constructed a correspondence between simply-typed lambda calculi and Cartesian closed categories. Scott’s Representation Theorem is a cousin to this result for untyped lambda calculi. It states that every untyped lambda calculus arises from a reflexive object in some category. We present a formalization of Scott’s Representation Theorem in univalent foundations, in the (Rocq-)UniMath library. Specifically, we implement two proofs of that theorem, one by Scott and one by Hyland. We also explain the role of the Karoubi envelope - a categorical construction - in the proofs and the impact the chosen foundation has on this construction. Finally, we report on some automation we have implemented for the reduction of λ-terms.

Cite as

Arnoud van der Leer, Kobe Wullaert, and Benedikt Ahrens. Scott’s Representation Theorem and the Univalent Karoubi Envelope. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 33:1-33:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{vanderleer_et_al:LIPIcs.ITP.2025.33,
  author =	{van der Leer, Arnoud and Wullaert, Kobe and Ahrens, Benedikt},
  title =	{{Scott’s Representation Theorem and the Univalent Karoubi Envelope}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{33:1--33:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.33},
  URN =		{urn:nbn:de:0030-drops-246318},
  doi =		{10.4230/LIPIcs.ITP.2025.33},
  annote =	{Keywords: Lambda calculi, algebraic theories, categorical semantics, Karoubi envelope, formalization, Rocq-UniMath, univalent foundations}
}
Document
Formalizing Colimits in 𝒞at

Authors: Mario Carneiro and Emily Riehl

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Certain results involving "higher structures" are not currently accessible to computer formalization because the prerequisite ∞-category theory has not been formalized. To support future work on formalizing ∞-category theory in Lean’s mathematics library, we formalize some fundamental constructions involving the 1-category of categories. Specifically, we construct the left adjoint to the nerve embedding of categories into simplicial sets, defining the homotopy category functor. We prove further that this adjunction is reflective, which allows us to conclude that 𝒞at has colimits. To our knowledge this is the first formalized proof that the nerve functor is a fully faithful right adjoint and that the category of categories is cocomplete.

Cite as

Mario Carneiro and Emily Riehl. Formalizing Colimits in 𝒞at. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 20:1-20:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{carneiro_et_al:LIPIcs.ITP.2025.20,
  author =	{Carneiro, Mario and Riehl, Emily},
  title =	{{Formalizing Colimits in 𝒞at}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{20:1--20:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.20},
  URN =		{urn:nbn:de:0030-drops-246186},
  doi =		{10.4230/LIPIcs.ITP.2025.20},
  annote =	{Keywords: category theory, infinity-category theory, nerve, simplicial set, colimit}
}
Document
Solving Guarded Domain Equations in Presheaves over Ordinals and Mechanizing It

Authors: Sergei Stepanenko and Amin Timany

Published in: LIPIcs, Volume 337, 10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025)


Abstract
Constructing solutions to recursive domain equations is a well-known, important problem in the study of programs and programming languages. Mathematically speaking, the problem is finding a fixed point (up to isomorphism) of a suitable functor over a suitable category. A particularly useful instance, inspired by the step-indexing technique, is where the functor is over (a subcategory of) the category of presheaves over the ordinal ω and the functors are locally-contractive, also known as guarded functors. This corresponds to step-indexing over natural numbers. However, for certain problems, e.g., when dealing with infinite non-determinism, one needs to employ trans-finite step-indexing, i.e., consider presheaf categories over higher ordinals. Prior work on trans-finite step-indexing either only considers a very narrow class of functors over a particularly restricted subcategory of presheaves over higher ordinals, or treats the problem very generally working with sheaves over an arbitrary complete Heyting algebra with a well-founded basis. In this paper we present a solution to the guarded domain equations problem over all guarded functors over the category of presheaves over ordinal numbers, as well as its mechanization in the Rocq Prover. As the categories of sheaves and presheaves over ordinals are equivalent, our main contribution is simplifying prior work from the setting of the category of sheaves to the setting of the category of presheaves and mechanizing it - presheaves are more amenable to mechanization in a proof assistant.

Cite as

Sergei Stepanenko and Amin Timany. Solving Guarded Domain Equations in Presheaves over Ordinals and Mechanizing It. In 10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 337, pp. 33:1-33:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{stepanenko_et_al:LIPIcs.FSCD.2025.33,
  author =	{Stepanenko, Sergei and Timany, Amin},
  title =	{{Solving Guarded Domain Equations in Presheaves over Ordinals and Mechanizing It}},
  booktitle =	{10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025)},
  pages =	{33:1--33:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-374-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{337},
  editor =	{Fern\'{a}ndez, Maribel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2025.33},
  URN =		{urn:nbn:de:0030-drops-236486},
  doi =		{10.4230/LIPIcs.FSCD.2025.33},
  annote =	{Keywords: Domain Equations, Guarded Fixed Points, Fixed Points, Category Theory, Rocq, Presheaves, Ordinals}
}
Document
Automatic Goal Clone Detection in Rocq

Authors: Ali Ghanbari

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
Proof engineering in Rocq is a labor-intensive process, and as proof developments grow in size, redundancy and maintainability become challenges. One such redundancy is goal cloning, i.e., proving α-equivalent goals multiple times, leading to wasted effort and bloated proof scripts. In this paper, we introduce clone-finder, a novel technique for detecting goal clones in Rocq proofs. By leveraging the formal notion of α-equivalence for Gallina terms, clone-finder systematically identifies duplicated proof goals across large Rocq codebases. We evaluate clone-finder on 40 real-world Rocq projects from the CoqGym dataset. Our results reveal that each project contains an average of 27.73 instances of goal clone. We observed that the clones can be categorized as either exact goal duplication, generalization, or α-equivalent goals with different proofs, each signifying varying levels duplicate effort. Our findings highlight significant untapped potential for proof reuse in Rocq-based formal verification projects, paving the way for future improvements in automated proof engineering.

Cite as

Ali Ghanbari. Automatic Goal Clone Detection in Rocq. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 12:1-12:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ghanbari:LIPIcs.ECOOP.2025.12,
  author =	{Ghanbari, Ali},
  title =	{{Automatic Goal Clone Detection in Rocq}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{12:1--12:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.12},
  URN =		{urn:nbn:de:0030-drops-233055},
  doi =		{10.4230/LIPIcs.ECOOP.2025.12},
  annote =	{Keywords: Clone Detection, Goal, Proof, Rocq, Gallina}
}
Document
Generating Software for Well-Understood Domains

Authors: Jacques Carette, Spencer W. Smith, and Jason Balaci

Published in: OASIcs, Volume 109, Eelco Visser Commemorative Symposium (EVCS 2023)


Abstract
Current software development is often quite code-centric and aimed at short-term deliverables, due to various contextual forces (such as the need for new revenue streams from many individual buyers). We're interested in software where different forces drive the development. Well understood domains and long-lived software provide one such context. A crucial observation is that software artifacts that are currently handwritten contain considerable duplication. By using domain-specific languages and generative techniques, we can capture the contents of many of the artifacts of such software. Assuming an appropriate codification of domain knowledge, we find that the resulting de-duplicated sources are shorter and closer to the domain. Our prototype, Drasil, indicates improvements to traceability and change management. We're also hopeful that this could lead to long-term productivity improvements for software where these forces are at play.

Cite as

Jacques Carette, Spencer W. Smith, and Jason Balaci. Generating Software for Well-Understood Domains. In Eelco Visser Commemorative Symposium (EVCS 2023). Open Access Series in Informatics (OASIcs), Volume 109, pp. 7:1-7:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{carette_et_al:OASIcs.EVCS.2023.7,
  author =	{Carette, Jacques and Smith, Spencer W. and Balaci, Jason},
  title =	{{Generating Software for Well-Understood Domains}},
  booktitle =	{Eelco Visser Commemorative Symposium (EVCS 2023)},
  pages =	{7:1--7:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-267-9},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{109},
  editor =	{L\"{a}mmel, Ralf and Mosses, Peter D. and Steimann, Friedrich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.EVCS.2023.7},
  URN =		{urn:nbn:de:0030-drops-177776},
  doi =		{10.4230/OASIcs.EVCS.2023.7},
  annote =	{Keywords: code generation, document generation, knowledge capture, software engineering}
}
Document
Eelco Visser as a Founding Member of the IFIP WG 2.11

Authors: Christian Lengauer and Jacques Carette

Published in: OASIcs, Volume 109, Eelco Visser Commemorative Symposium (EVCS 2023)


Abstract
Appreciation of Eelco Visser’s contribution to the IFIP WG 2.11 by two of its chairs. Christian Lengauer was chair from 2007 to 2013. Jacques Carette has been chair since 2019.

Cite as

Christian Lengauer and Jacques Carette. Eelco Visser as a Founding Member of the IFIP WG 2.11. In Eelco Visser Commemorative Symposium (EVCS 2023). Open Access Series in Informatics (OASIcs), Volume 109, pp. 19:1-19:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lengauer_et_al:OASIcs.EVCS.2023.19,
  author =	{Lengauer, Christian and Carette, Jacques},
  title =	{{Eelco Visser as a Founding Member of the IFIP WG 2.11}},
  booktitle =	{Eelco Visser Commemorative Symposium (EVCS 2023)},
  pages =	{19:1--19:3},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-267-9},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{109},
  editor =	{L\"{a}mmel, Ralf and Mosses, Peter D. and Steimann, Friedrich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.EVCS.2023.19},
  URN =		{urn:nbn:de:0030-drops-177891},
  doi =		{10.4230/OASIcs.EVCS.2023.19},
  annote =	{Keywords: IFIP WG 2.11}
}
Document
A Machine-Checked Proof of Birkhoff’s Variety Theorem in Martin-Löf Type Theory

Authors: William DeMeo and Jacques Carette

Published in: LIPIcs, Volume 239, 27th International Conference on Types for Proofs and Programs (TYPES 2021)


Abstract
The Agda Universal Algebra Library is a project aimed at formalizing the foundations of universal algebra, equational logic and model theory in dependent type theory using Agda. In this paper we draw from many components of the library to present a self-contained, formal, constructive proof of Birkhoff’s HSP theorem in Martin-Löf dependent type theory. This achieves one of the project’s initial goals: to demonstrate the expressive power of inductive and dependent types for representing and reasoning about general algebraic and relational structures by using them to formalize a significant theorem in the field.

Cite as

William DeMeo and Jacques Carette. A Machine-Checked Proof of Birkhoff’s Variety Theorem in Martin-Löf Type Theory. In 27th International Conference on Types for Proofs and Programs (TYPES 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 239, pp. 4:1-4:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{demeo_et_al:LIPIcs.TYPES.2021.4,
  author =	{DeMeo, William and Carette, Jacques},
  title =	{{A Machine-Checked Proof of Birkhoff’s Variety Theorem in Martin-L\"{o}f Type Theory}},
  booktitle =	{27th International Conference on Types for Proofs and Programs (TYPES 2021)},
  pages =	{4:1--4:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-254-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{239},
  editor =	{Basold, Henning and Cockx, Jesper and Ghilezan, Silvia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2021.4},
  URN =		{urn:nbn:de:0030-drops-167737},
  doi =		{10.4230/LIPIcs.TYPES.2021.4},
  annote =	{Keywords: Agda, constructive mathematics, dependent types, equational logic, formal verification, Martin-L\"{o}f type theory, model theory, universal algebra}
}
Document
Realising Intensional S4 and GL Modalities

Authors: Liang-Ting Chen and Hsiang-Shang Ko

Published in: LIPIcs, Volume 216, 30th EACSL Annual Conference on Computer Science Logic (CSL 2022)


Abstract
There have been investigations into type-theoretic foundations for metaprogramming, notably Davies and Pfenning’s (2001) treatment in S4 modal logic, where code evaluating to values of type A is given the modal type Code A (□A in the original paper). Recently Kavvos (2017) extended PCF with Code A and intensional recursion, understood as the deductive form of the GL (Gödel-Löb) axiom in provability logic, but the resulting type system is logically inconsistent. Inspired by staged computation, we observe that a term of type Code A is, in general, code to be evaluated in a next stage, whereas S4 modal type theory is a special case where code can be evaluated in the current stage, and the two types of code should be discriminated. Consequently, we use two separate modalities ⊠ and □ to model S4 and GL respectively in a unified categorical framework while retaining logical consistency. Following Kavvos’ (2017) novel approach to the semantics of intensionality, we interpret the two modalities in the P-category of assemblies and trackable maps. For the GL modality □ in particular, we use guarded type theory to articulate what it means by a “next” stage and to model intensional recursion by guarded recursion together with Kleene’s second recursion theorem. Besides validating the S4 and GL axioms, our model better captures the essence of intensionality by refuting congruence (so that two extensionally equal terms may not be intensionally equal) and internal quoting (both A → □A and A → ⊠A). Our results are developed in (guarded) homotopy type theory and formalised in Agda.

Cite as

Liang-Ting Chen and Hsiang-Shang Ko. Realising Intensional S4 and GL Modalities. In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 216, pp. 14:1-14:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.CSL.2022.14,
  author =	{Chen, Liang-Ting and Ko, Hsiang-Shang},
  title =	{{Realising Intensional S4 and GL Modalities}},
  booktitle =	{30th EACSL Annual Conference on Computer Science Logic (CSL 2022)},
  pages =	{14:1--14:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-218-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{216},
  editor =	{Manea, Florin and Simpson, Alex},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2022.14},
  URN =		{urn:nbn:de:0030-drops-157341},
  doi =		{10.4230/LIPIcs.CSL.2022.14},
  annote =	{Keywords: provability, guarded recursion, realisability, modal types, metaprogramming}
}
  • Refine by Type
  • 8 Document/PDF
  • 4 Document/HTML

  • Refine by Publication Year
  • 4 2025
  • 2 2023
  • 2 2022

  • Refine by Author
  • 3 Carette, Jacques
  • 1 Ahrens, Benedikt
  • 1 Balaci, Jason
  • 1 Carneiro, Mario
  • 1 Chen, Liang-Ting
  • Show More...

  • Refine by Series/Journal
  • 6 LIPIcs
  • 2 OASIcs

  • Refine by Classification
  • 4 Theory of computation → Type theory
  • 3 Theory of computation → Logic and verification
  • 2 Theory of computation → Denotational semantics
  • 1 Computing methodologies → Representation of mathematical objects
  • 1 Software and its engineering
  • Show More...

  • Refine by Keyword
  • 2 Rocq
  • 1 Agda
  • 1 Category Theory
  • 1 Clone Detection
  • 1 Domain Equations
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail