1 Search Results for "Fitzsimons, Joseph F."


Document
Complexity Classification of Conjugated Clifford Circuits

Authors: Adam Bouland, Joseph F. Fitzsimons, and Dax Enshan Koh

Published in: LIPIcs, Volume 102, 33rd Computational Complexity Conference (CCC 2018)


Abstract
Clifford circuits - i.e. circuits composed of only CNOT, Hadamard, and pi/4 phase gates - play a central role in the study of quantum computation. However, their computational power is limited: a well-known result of Gottesman and Knill states that Clifford circuits are efficiently classically simulable. We show that in contrast, "conjugated Clifford circuits" (CCCs) - where one additionally conjugates every qubit by the same one-qubit gate U - can perform hard sampling tasks. In particular, we fully classify the computational power of CCCs by showing that essentially any non-Clifford conjugating unitary U can give rise to sampling tasks which cannot be efficiently classically simulated to constant multiplicative error, unless the polynomial hierarchy collapses. Furthermore, by standard techniques, this hardness result can be extended to allow for the more realistic model of constant additive error, under a plausible complexity-theoretic conjecture. This work can be seen as progress towards classifying the computational power of all restricted quantum gate sets.

Cite as

Adam Bouland, Joseph F. Fitzsimons, and Dax Enshan Koh. Complexity Classification of Conjugated Clifford Circuits. In 33rd Computational Complexity Conference (CCC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 102, pp. 21:1-21:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bouland_et_al:LIPIcs.CCC.2018.21,
  author =	{Bouland, Adam and Fitzsimons, Joseph F. and Koh, Dax Enshan},
  title =	{{Complexity Classification of Conjugated Clifford Circuits}},
  booktitle =	{33rd Computational Complexity Conference (CCC 2018)},
  pages =	{21:1--21:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-069-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{102},
  editor =	{Servedio, Rocco A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2018.21},
  URN =		{urn:nbn:de:0030-drops-88677},
  doi =		{10.4230/LIPIcs.CCC.2018.21},
  annote =	{Keywords: gate set classification, quantum advantage, sampling problems, polynomial hierarchy}
}
  • Refine by Author
  • 1 Bouland, Adam
  • 1 Fitzsimons, Joseph F.
  • 1 Koh, Dax Enshan

  • Refine by Classification
  • 1 Theory of computation → Computational complexity and cryptography
  • 1 Theory of computation → Quantum complexity theory

  • Refine by Keyword
  • 1 gate set classification
  • 1 polynomial hierarchy
  • 1 quantum advantage
  • 1 sampling problems

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail