4 Search Results for "Krishnan, Aditya"


Document
Practical Type-Based Taint Checking and Inference

Authors: Nima Karimipour, Kanak Das, Manu Sridharan, and Behnaz Hassanshahi

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
Many important security properties can be formulated in terms of flows of tainted data, and improved taint analysis tools to prevent such flows are of critical need. Most existing taint analyses use whole-program static analysis, leading to scalability challenges. Type-based checking is a promising alternative, as it enables modular and incremental checking for fast performance. However, type-based approaches have not been widely adopted in practice, due to challenges with false positives and annotating existing codebases. In this paper, we present a new approach to type-based checking of taint properties that addresses these challenges, based on two key techniques. First, we present a new type-based tainting checker with significantly reduced false positives, via more practical handling of third-party libraries and other language constructs. Second, we present a novel technique to automatically infer tainting type qualifiers for existing code. Our technique supports inference of generic type argument annotations, crucial for tainting properties. We implemented our techniques in a tool TaintTyper and evaluated it on real-world benchmarks. TaintTyper exceeds the recall of a state-of-the-art whole-program taint analyzer, with comparable precision, and 2.93X-22.9X faster checking time. Further, TaintTyper infers annotations comparable to those written by hand, suitable for insertion into source code. TaintTyper is a promising new approach to efficient and practical taint checking.

Cite as

Nima Karimipour, Kanak Das, Manu Sridharan, and Behnaz Hassanshahi. Practical Type-Based Taint Checking and Inference. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 18:1-18:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{karimipour_et_al:LIPIcs.ECOOP.2025.18,
  author =	{Karimipour, Nima and Das, Kanak and Sridharan, Manu and Hassanshahi, Behnaz},
  title =	{{Practical Type-Based Taint Checking and Inference}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{18:1--18:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.18},
  URN =		{urn:nbn:de:0030-drops-233119},
  doi =		{10.4230/LIPIcs.ECOOP.2025.18},
  annote =	{Keywords: Static analysis, Taint Analysis, Pluggable type systems, Security, Inference}
}
Document
Survey
Knowledge Graph Embeddings: Open Challenges and Opportunities

Authors: Russa Biswas, Lucie-Aimée Kaffee, Michael Cochez, Stefania Dumbrava, Theis E. Jendal, Matteo Lissandrini, Vanessa Lopez, Eneldo Loza Mencía, Heiko Paulheim, Harald Sack, Edlira Kalemi Vakaj, and Gerard de Melo

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
While Knowledge Graphs (KGs) have long been used as valuable sources of structured knowledge, in recent years, KG embeddings have become a popular way of deriving numeric vector representations from them, for instance, to support knowledge graph completion and similarity search. This study surveys advances as well as open challenges and opportunities in this area. For instance, the most prominent embedding models focus primarily on structural information. However, there has been notable progress in incorporating further aspects, such as semantics, multi-modal, temporal, and multilingual features. Most embedding techniques are assessed using human-curated benchmark datasets for the task of link prediction, neglecting other important real-world KG applications. Many approaches assume a static knowledge graph and are unable to account for dynamic changes. Additionally, KG embeddings may encode data biases and lack interpretability. Overall, this study provides an overview of promising research avenues to learn improved KG embeddings that can address a more diverse range of use cases.

Cite as

Russa Biswas, Lucie-Aimée Kaffee, Michael Cochez, Stefania Dumbrava, Theis E. Jendal, Matteo Lissandrini, Vanessa Lopez, Eneldo Loza Mencía, Heiko Paulheim, Harald Sack, Edlira Kalemi Vakaj, and Gerard de Melo. Knowledge Graph Embeddings: Open Challenges and Opportunities. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 4:1-4:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{biswas_et_al:TGDK.1.1.4,
  author =	{Biswas, Russa and Kaffee, Lucie-Aim\'{e}e and Cochez, Michael and Dumbrava, Stefania and Jendal, Theis E. and Lissandrini, Matteo and Lopez, Vanessa and Menc{\'\i}a, Eneldo Loza and Paulheim, Heiko and Sack, Harald and Vakaj, Edlira Kalemi and de Melo, Gerard},
  title =	{{Knowledge Graph Embeddings: Open Challenges and Opportunities}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{4:1--4:32},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.4},
  URN =		{urn:nbn:de:0030-drops-194783},
  doi =		{10.4230/TGDK.1.1.4},
  annote =	{Keywords: Knowledge Graphs, KG embeddings, Link prediction, KG applications}
}
Document
Track A: Algorithms, Complexity and Games
Lower Bounds for Pseudo-Deterministic Counting in a Stream

Authors: Vladimir Braverman, Robert Krauthgamer, Aditya Krishnan, and Shay Sapir

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Many streaming algorithms provide only a high-probability relative approximation. These two relaxations, of allowing approximation and randomization, seem necessary - for many streaming problems, both relaxations must be employed simultaneously, to avoid an exponentially larger (and often trivial) space complexity. A common drawback of these randomized approximate algorithms is that independent executions on the same input have different outputs, that depend on their random coins. Pseudo-deterministic algorithms combat this issue, and for every input, they output with high probability the same "canonical" solution. We consider perhaps the most basic problem in data streams, of counting the number of items in a stream of length at most n. Morris’s counter [CACM, 1978] is a randomized approximation algorithm for this problem that uses O(log log n) bits of space, for every fixed approximation factor (greater than 1). Goldwasser, Grossman, Mohanty and Woodruff [ITCS 2020] asked whether pseudo-deterministic approximation algorithms can match this space complexity. Our main result answers their question negatively, and shows that such algorithms must use Ω(√{log n / log log n}) bits of space. Our approach is based on a problem that we call Shift Finding, and may be of independent interest. In this problem, one has query access to a shifted version of a known string F ∈ {0,1}^{3n}, which is guaranteed to start with n zeros and end with n ones, and the goal is to find the unknown shift using a small number of queries. We provide for this problem an algorithm that uses O(√n) queries. It remains open whether poly(log n) queries suffice; if true, then our techniques immediately imply a nearly-tight Ω(log n/log log n) space bound for pseudo-deterministic approximate counting.

Cite as

Vladimir Braverman, Robert Krauthgamer, Aditya Krishnan, and Shay Sapir. Lower Bounds for Pseudo-Deterministic Counting in a Stream. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 30:1-30:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{braverman_et_al:LIPIcs.ICALP.2023.30,
  author =	{Braverman, Vladimir and Krauthgamer, Robert and Krishnan, Aditya and Sapir, Shay},
  title =	{{Lower Bounds for Pseudo-Deterministic Counting in a Stream}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{30:1--30:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.30},
  URN =		{urn:nbn:de:0030-drops-180827},
  doi =		{10.4230/LIPIcs.ICALP.2023.30},
  annote =	{Keywords: streaming algorithms, pseudo-deterministic, approximate counting}
}
Document
On Sketching the q to p Norms

Authors: Aditya Krishnan, Sidhanth Mohanty, and David P. Woodruff

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
We initiate the study of data dimensionality reduction, or sketching, for the q -> p norms. Given an n x d matrix A, the q -> p norm, denoted |A |_{q -> p} = sup_{x in R^d \ 0} |Ax |_p / |x |_q, is a natural generalization of several matrix and vector norms studied in the data stream and sketching models, with applications to datamining, hardness of approximation, and oblivious routing. We say a distribution S on random matrices L in R^{nd} - > R^k is a (k,alpha)-sketching family if from L(A), one can approximate |A |_{q -> p} up to a factor alpha with constant probability. We provide upper and lower bounds on the sketching dimension k for every p, q in [1, infty], and in a number of cases our bounds are tight. While we mostly focus on constant alpha, we also consider large approximation factors alpha, as well as other variants of the problem such as when A has low rank.

Cite as

Aditya Krishnan, Sidhanth Mohanty, and David P. Woodruff. On Sketching the q to p Norms. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 15:1-15:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{krishnan_et_al:LIPIcs.APPROX-RANDOM.2018.15,
  author =	{Krishnan, Aditya and Mohanty, Sidhanth and Woodruff, David P.},
  title =	{{On Sketching the q to p Norms}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{15:1--15:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.15},
  URN =		{urn:nbn:de:0030-drops-94192},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.15},
  annote =	{Keywords: Dimensionality Reduction, Norms, Sketching, Streaming}
}
  • Refine by Type
  • 4 Document/PDF
  • 2 Document/HTML

  • Refine by Publication Year
  • 1 2025
  • 2 2023
  • 1 2018

  • Refine by Author
  • 2 Krishnan, Aditya
  • 1 Biswas, Russa
  • 1 Braverman, Vladimir
  • 1 Cochez, Michael
  • 1 Das, Kanak
  • Show More...

  • Refine by Series/Journal
  • 3 LIPIcs
  • 1 TGDK

  • Refine by Classification
  • 1 Computing methodologies → Machine learning approaches
  • 1 Computing methodologies → Semantic networks
  • 1 Security and privacy → Software security engineering
  • 1 Software and its engineering → Software verification and validation
  • 1 Theory of computation → Lower bounds and information complexity
  • Show More...

  • Refine by Keyword
  • 1 Dimensionality Reduction
  • 1 Inference
  • 1 KG applications
  • 1 KG embeddings
  • 1 Knowledge Graphs
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail