License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2020.73
URN: urn:nbn:de:0030-drops-117581
URL: https://drops.dagstuhl.de/opus/volltexte/2020/11758/
Go to the corresponding LIPIcs Volume Portal


Boodaghians, Shant ; Kulkarni, Rucha ; Mehta, Ruta

Smoothed Efficient Algorithms and Reductions for Network Coordination Games

pdf-format:
LIPIcs-ITCS-2020-73.pdf (0.5 MB)


Abstract

We study the smoothed complexity of finding pure Nash equilibria in Network Coordination Games, a PLS-complete problem in the worst case, even when each player has two strategies. This is a potential game where the sequential-better-response algorithm is known to converge to a pure NE, albeit in exponential time. First, we prove polynomial (respectively, quasi-polynomial) smoothed complexity when the underlying game graph is complete (resp. arbitrary), and every player has constantly many strategies. The complete graph assumption is reminiscent of perturbing all parameters, a common assumption in most known polynomial smoothed complexity results. We develop techniques to bound the probability that an (adversarial) better-response sequence makes slow improvements to the potential. Our approach combines and generalizes the local-max-cut approaches of Etscheid and Röglin (SODA `14; ACM TALG, `17) and Angel, Bubeck, Peres, and Wei (STOC `17), to handle the multi-strategy case. We believe that the approach and notions developed herein could be of interest in addressing the smoothed complexity of other potential games. Further, we define a notion of a smoothness-preserving reduction among search problems, and obtain reductions from 2-strategy network coordination games to local-max-cut, and from k-strategy games (k arbitrary) to local-max-bisection. The former, with the recent result of Bibak, Chandrasekaran, and Carlson (SODA `18) gives an alternate O(n^8)-time smoothed algorithm when k=2. These reductions extend smoothed efficient algorithms from one problem to another.

BibTeX - Entry

@InProceedings{boodaghians_et_al:LIPIcs:2020:11758,
  author =	{Shant Boodaghians and Rucha Kulkarni and Ruta Mehta},
  title =	{{Smoothed Efficient Algorithms and Reductions for Network Coordination Games}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{73:1--73:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Thomas Vidick},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/11758},
  URN =		{urn:nbn:de:0030-drops-117581},
  doi =		{10.4230/LIPIcs.ITCS.2020.73},
  annote =	{Keywords: Network Coordination Games, Smoothed Analysis}
}

Keywords: Network Coordination Games, Smoothed Analysis
Seminar: 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)
Issue Date: 2020
Date of publication: 10.01.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI