License: Creative Commons Attribution 3.0 Unported license (CC-BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/DagRep.9.11.24
URN: urn:nbn:de:0030-drops-119820
URL: https://drops.dagstuhl.de/opus/volltexte/2020/11982/
Go back to Dagstuhl Reports


Bertini, Enrico ; Bremer, Peer-Timo ; Oelke, Daniela ; Thiagarajan, Jayaraman
Weitere Beteiligte (Hrsg. etc.): Enrico Bertini and Peer-Timo Bremer and Daniela Oelke and Jayaraman Thiagarajan

Machine Learning Meets Visualization to Make Artificial Intelligence Interpretable (Dagstuhl Seminar 19452)

pdf-format:
dagrep_v009_i011_p024_19452.pdf (6 MB)


Abstract

This report documents the program and the outcomes of Dagstuhl Seminar 19452 "Machine Learning Meets Visualization to Make Artificial Intelligence Interpretable".

BibTeX - Entry

@Article{bertini_et_al:DR:2020:11982,
  author =	{Enrico Bertini and Peer-Timo Bremer and Daniela Oelke and Jayaraman Thiagarajan},
  title =	{{Machine Learning Meets Visualization to Make Artificial Intelligence Interpretable (Dagstuhl Seminar 19452)}},
  pages =	{24--33},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2020},
  volume =	{9},
  number =	{11},
  editor =	{Enrico Bertini and Peer-Timo Bremer and Daniela Oelke and Jayaraman Thiagarajan},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/11982},
  URN =		{urn:nbn:de:0030-drops-119820},
  doi =		{10.4230/DagRep.9.11.24},
  annote =	{Keywords: Visualization, Machine Learning, Interpretability}
}

Keywords: Visualization, Machine Learning, Interpretability
Collection: Dagstuhl Reports, Volume 9, Issue 11
Issue Date: 2020
Date of publication: 31.03.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI