Space Ants: Constructing and Reconfiguring Large-Scale Structures with Finite Automata (Media Exposition)

Authors Amira Abdel-Rahman , Aaron T. Becker , Daniel E. Biediger, Kenneth C. Cheung, Sándor P. Fekete , Neil A. Gershenfeld, Sabrina Hugo, Benjamin Jenett , Phillip Keldenich , Eike Niehs , Christian Rieck , Arne Schmidt , Christian Scheffer , Michael Yannuzzi



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2020.73.pdf
  • Filesize: 5.55 MB
  • 6 pages

Document Identifiers

Author Details

Amira Abdel-Rahman
  • Center for Bits and Atoms, MIT, Cambridge, MA, USA
Aaron T. Becker
  • Department of Electrical and Computer , Engineering, University of Houston, TX, USA
Daniel E. Biediger
  • Department of Electrical and Computer , Engineering, University of Houston, TX, USA
Kenneth C. Cheung
  • Coded Structures Lab, NASA Ames Research Center, Moffett Field, CA, USA
Sándor P. Fekete
  • Department of Computer Science, TU Braunschweig, Germany
Neil A. Gershenfeld
  • Center for Bits and Atoms, MIT, Cambridge, MA, USA
Sabrina Hugo
  • Department of Computer Science, TU Braunschweig, Germany
Benjamin Jenett
  • Center for Bits and Atoms, MIT, Cambridge, MA, USA
Phillip Keldenich
  • Department of Computer Science, TU Braunschweig, Germany
Eike Niehs
  • Department of Computer Science, TU Braunschweig, Germany
Christian Rieck
  • Department of Computer Science, TU Braunschweig, Germany
Arne Schmidt
  • Department of Computer Science, TU Braunschweig, Germany
Christian Scheffer
  • Department of Computer Science, TU Braunschweig, Germany
Michael Yannuzzi
  • Department of Electrical and Computer , Engineering, University of Houston, TX, USA

Cite As Get BibTex

Amira Abdel-Rahman, Aaron T. Becker, Daniel E. Biediger, Kenneth C. Cheung, Sándor P. Fekete, Neil A. Gershenfeld, Sabrina Hugo, Benjamin Jenett, Phillip Keldenich, Eike Niehs, Christian Rieck, Arne Schmidt, Christian Scheffer, and Michael Yannuzzi. Space Ants: Constructing and Reconfiguring Large-Scale Structures with Finite Automata (Media Exposition). In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 73:1-73:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020) https://doi.org/10.4230/LIPIcs.SoCG.2020.73

Abstract

In this video, we consider recognition and reconfiguration of lattice-based cellular structures by very simple robots with only basic functionality. The underlying motivation is the construction and modification of space facilities of enormous dimensions, where the combination of new materials with extremely simple robots promises structures of previously unthinkable size and flexibility. We present algorithmic methods that are able to detect and reconfigure arbitrary polyominoes, based on finite-state robots, while also preserving connectivity of a structure during reconfiguration. Specific results include methods for determining a bounding box, scaling a given arrangement, and adapting more general algorithms for transforming polyominoes.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
  • Theory of computation → Formal languages and automata theory
Keywords
  • Finite automata
  • reconfiguration
  • construction
  • scaling

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Jose Balanza-Martinez, Austin Luchsinger, David Caballero, Rene Reyes, Angel A Cantu, Robert Schweller, Luis Angel Garcia, and Tim Wylie. Full tilt: universal constructors for general shapes with uniform external forces. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2689-2708, 2019. Google Scholar
  2. Aaron T Becker, Sándor P Fekete, Phillip Keldenich, Dominik Krupke, Christian Rieck, Christian Scheffer, and Arne Schmidt. Tilt assembly: Algorithms for micro-factories that build objects with uniform external forces. Algorithmica, 82:165-187, 2020. Google Scholar
  3. M. A. Bender and D. K. Slonim. The power of team exploration: two robots can learn unlabeled directed graphs. In Symposium on Foundations of Computer Science (FOCS, pages 75-85, 1994. URL: https://doi.org/10.1109/SFCS.1994.365703.
  4. M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier to search than graphs). In Symposium on Foundations of Computer Science (FOCS), pages 132-142, 1978. URL: https://doi.org/10.1109/SFCS.1978.30.
  5. P. Brass, F. Cabrera-Mora, A. Gasparri, and J. Xiao. Multirobot tree and graph exploration. IEEE Transactions on Robotics, 27(4):707-717, 2011. URL: https://doi.org/10.1109/TRO.2011.2121170.
  6. Kenneth C Cheung and Neil Gershenfeld. Reversibly assembled cellular composite materials. Science, 341(6151):1219-1221, 2013. Google Scholar
  7. Allan Costa, Amira Abdel-Rahman, Benjamin Jenett, Neil Gershenfeld, Irina Kostitsyna, and Kenneth Cheung. Algorithmic approaches to reconfigurable assembly systems. In IEEE Aerospace Conference, pages 1-8, 2019. Google Scholar
  8. Nicholas B Cramer, Daniel W Cellucci, Olivia B Formoso, Christine E Gregg, Benjamin E Jenett, Joseph H Kim, Martynas Lendraitis, Sean S Swei, Greenfield T Trinh, Khanh V Trinh, and Kenneth C. Cheung. Elastic shape morphing of ultralight structures by programmable assembly. Smart Materials and Structures, 28(5):055006, 2019. Google Scholar
  9. Shantanu Das, Paola Flocchini, Shay Kutten, Amiya Nayak, and Nicola Santoro. Map construction of unknown graphs by multiple agents. Theoretical Computer Science, 385(1):34-48, 2007. URL: https://doi.org/10.1016/j.tcs.2007.05.011.
  10. Joshua J. Daymude, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim Strothmann. Improved leader election for self-organizing programmable matter. In Algorithms for Sensor Systems (ALGOSENSORS), pages 127-140, 2017. URL: https://doi.org/10.1007/978-3-319-72751-6_10.
  11. Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim Strothmann. Brief announcement: Amoebot - a new model for programmable matter. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 220-222, 2014. URL: https://doi.org/10.1145/2612669.2612712.
  12. Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andréa W. Richa, Christian Scheideler, and Thim Strothmann. On the runtime of universal coating for programmable matter. In Yannick Rondelez and Damien Woods, editors, DNA Computing and Molecular Programming, pages 148-164, 2016. URL: https://doi.org/10.1007/978-3-319-43994-5_10.
  13. Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim Strothmann. An algorithmic framework for shape formation problems in self-organizing particle systems. In International Conference on Nanoscale Computing and Communication (NANOCOM), pages 21:1-21:2, 2015. URL: https://doi.org/10.1145/2800795.2800829.
  14. Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim Strothmann. Universal coating for programmable matter. CoRR, abs/1601.01008, 2016. URL: http://arxiv.org/abs/1601.01008.
  15. Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida Bazzi, Andréa W. Richa, and Christian Scheideler. Leader election and shape formation with self-organizing programmable matter. In Andrew Phillips and Peng Yin, editors, DNA Computing and Molecular Programming, pages 117-132, 2015. URL: https://doi.org/10.1007/978-3-319-21999-8_8.
  16. Giuseppe Antonio Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko Yamauchi. Shape formation by programmable particles. CoRR, abs/1705.03538, 2017. URL: http://arxiv.org/abs/1705.03538.
  17. Krzysztof Diks, Pierre Fraigniaud, Evangelos Kranakis, and Andrzej Pelc. Tree exploration with little memory. Journal of Algorithms, 51(1):38-63, 2004. URL: https://doi.org/10.1016/j.jalgor.2003.10.002.
  18. Sándor P. Fekete, Robert Gmyr, Sabrina Hugo, Phillip Keldenich, Christian Scheffer, and Arne Schmidt. CADbots: Algorithmic aspects of manipulating programmable matter with finite automata. CoRR, abs/1810.06360, 2018. To appear in: Proceedings of Workshop of Algorithmic Foundations of Robotics (WAFR 2018). URL: http://arxiv.org/abs/1810.06360.
  19. Sándor P. Fekete, Eike Niehs, Christian Scheffer, and Arne Schmidt. Connected assembly and reconfiguration by finite automata. CoRR, abs/1909.03880, 2019. URL: http://arxiv.org/abs/1909.03880.
  20. Rudolf Fleischer and Gerhard Trippen. Exploring an unknown graph efficiently. In European Symposium on Algorithms (ESA), pages 11-22, 2005. Google Scholar
  21. Pierre Fraigniaud, Leszek Gasieniec, Dariusz R. Kowalski, and Andrzej Pelc. Collective tree exploration. Networks, 48(3):166-177, 2006. URL: https://doi.org/10.1002/net.20127.
  22. Pierre Fraigniaud and David Ilcinkas. Digraphs exploration with little memory. In Symposium on Theoretical Aspects of Computer Science (STACS), pages 246-257, 2004. Google Scholar
  23. Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, and David Peleg. Graph Exploration by a Finite Automaton. Theoretical Computer Science, 345(2-3):331-344, 2005. URL: https://doi.org/10.1016/j.tcs.2005.07.014.
  24. Leszek Gasieniec, Andrzej Pelc, Tomasz Radzik, and Xiaohui Zhang. Tree exploration with logarithmic memory. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 585-594, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283446.
  25. Leszek Gasieniec and Tomasz Radzik. Memory efficient anonymous graph exploration. In Graph-Theoretic Concepts in Computer Science (WG), pages 14-29, 2008. Google Scholar
  26. R. Gmyr, I. Kostitsyna, F. Kuhn, C. Scheideler, and T. Strothmann. Forming tile shapes with a single robot. In European Workshop on Computational Geometry (EuroCG 2017), pages 9-12, 2017. URL: https://research.tue.nl/en/publications/forming-tile-shapes-with-a-single-robot.
  27. Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian Rudolph, and Christian Scheideler. Shape Recognition by a Finite Automaton Robot. In Mathematical Foundations of Computer Science (MFCS), pages 52:1-52:15, 2018. URL: https://doi.org/10.4230/LIPIcs.MFCS.2018.52.
  28. Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian Rudolph, Christian Scheideler, and Thim Strothmann. Forming tile shapes with simple robots. In DNA Computing and Molecular Programming, pages 122-138, 2018. URL: https://doi.org/10.1007/978-3-030-00030-1_8.
  29. Christine E Gregg, Joseph H Kim, and Kenneth C Cheung. Ultra-light and scalable composite lattice materials. Advanced Engineering Materials, 20(9):1800213, 2018. Google Scholar
  30. Ferran Hurtado, Enrique Molina, Suneeta Ramaswami, and Vera Sacristán. Distributed reconfiguration of 2d lattice-based modular robotic systems. Autonomous Robots, 38(4):383-413, 2015. URL: https://doi.org/10.1007/s10514-015-9421-8.
  31. B. Jenett, A. Abdel-Rahman, K. Cheung, and N. Gershenfeld. Material–robot system for assembly of discrete cellular structures. IEEE Robotics and Automation Letters, 4:4019-4026, 2019. Google Scholar
  32. Ben Jenett and Kenneth Cheung. BILL-E: Robotic platform for locomotion and manipulation of lightweight space structures. In AIAA/AHS Adaptive Structures Conference, pages 1876-ff., 2017. Google Scholar
  33. Benjamin Jenett, Sam Calisch, Daniel Cellucci, Nick Cramer, Neil Gershenfeld, Sean Swei, and Kenneth C Cheung. Digital morphing wing: active wing shaping concept using composite lattice-based cellular structures. Soft Robotics, 4(1):33-48, 2017. Google Scholar
  34. Benjamin Jenett and Daniel Cellucci. A mobile robot for locomotion through a 3D periodic lattice environment. In IEEE International Conference on Robotics and Automation (ICRA), pages 5474-5479, 2017. Google Scholar
  35. Benjamin Jenett, Daniel Cellucci, Christine Gregg, and Kenneth Cheung. Meso-scale digital materials: modular, reconfigurable, lattice-based structures. In International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers Digital Collection, 2016. Google Scholar
  36. Benjamin Jenett, Christine Gregg, Daniel Cellucci, and Kenneth Cheung. Design of multifunctional hierarchical space structures. In IEEE Aerospace Conference, pages 1-10, 2017. Google Scholar
  37. Eike Niehs, Arne Schmidt, Christian Scheffer, Daniel E. Biediger, Michael Yanuzzi, Benjamin Jenett, Amira Abdel-Rahman, Kenneth C. Cheung, Aaron T. Becker, and Sándor P. Fekete. Recognition and reconfiguration of lattice-based cellular structures by simple robots. In IEEE International Conference on Robotics and Automation (ICRA), 2020. To appear. Google Scholar
  38. Petrişor Panaite and Andrzej Pelc. Exploring unknown undirected graphs. Journal of Algorithms, 33(2):281-295, 1999. URL: https://doi.org/10.1006/jagm.1999.1043.
  39. Arne Schmidt, Sheryl Manzoor, Li Huang, Aaron T Becker, and Sándor P Fekete. Efficient parallel self-assembly under uniform control inputs. IEEE Robotics and Automation Letters, 3(4):3521-3528, 2018. Google Scholar
  40. Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng Yin. Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In Innovations in Theoretical Computer Science (ITCS), pages 353-354, 2013. URL: https://doi.org/10.1145/2422436.2422476.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail