LIPIcs.SoCG.2020.78.pdf
- Filesize: 3.49 MB
- 5 pages
Face-connected configurations of cubes are a common model for modular robots in three dimensions. In this abstract and the accompanying video we study reconfigurations of such modular robots using so-called sliding moves. Using sliding moves, it is always possible to reconfigure one face-connected configuration of n cubes into any other, while keeping the robot connected at all stages of the reconfiguration. For certain configurations Ω(n²) sliding moves are necessary. In contrast, the best current upper bound is O(n³). It has been conjectured that there is always a cube on the outside of any face-connected configuration of cubes which can be moved without breaking connectivity. The existence of such a cube would immediately imply a straight-forward O(n²) reconfiguration algorithm. However, we present a configuration of cubes such that no cube on the outside can move without breaking connectivity. In other words, we show that this particular avenue towards an O(n²) reconfiguration algorithm for face-connected cubes is blocked.
Feedback for Dagstuhl Publishing