Dots & Polygons (Media Exposition)

Authors Kevin Buchin , Mart Hagedoorn, Irina Kostitsyna , Max van Mulken, Jolan Rensen, Leo van Schooten



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2020.79.pdf
  • Filesize: 499 kB
  • 4 pages

Document Identifiers

Author Details

Kevin Buchin
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
Mart Hagedoorn
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
Irina Kostitsyna
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
Max van Mulken
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
Jolan Rensen
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
Leo van Schooten
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Acknowledgements

We would like to thank David Eppstein for discussing [Eppstein, 2020] with us.

Cite As Get BibTex

Kevin Buchin, Mart Hagedoorn, Irina Kostitsyna, Max van Mulken, Jolan Rensen, and Leo van Schooten. Dots & Polygons (Media Exposition). In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 79:1-79:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020) https://doi.org/10.4230/LIPIcs.SoCG.2020.79

Abstract

We present a new game, Dots & Polygons, played on a planar point set. We prove that its NP-hard and discuss strategies for the case when the point set is in convex position.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Dots & Boxes
  • NP-hard
  • game
  • cycle packing

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Oswin Aichholzer, David Bremner, Erik D. Demaine, Ferran Hurtado, Evangelos Kranakis, Hannes Krasser, Suneeta Ramaswami, Saurabh Sethia, and Jorge Urrutia. Games on triangulations. Theoretical Computer Science, 343(1–2):52-54, 2005. Google Scholar
  2. Sander Beekhuis, Kevin Buchin, Thom Castermans, Thom Hurks, and Willem Sonke. Ruler of the plane - games of geometry (multimedia contribution). In 33rd International Symposium on Computational Geometry (SoCG), volume 77 of LIPIcs, pages 63:1-63:5. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. Google Scholar
  3. Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational geometry: algorithms and applications. Springer, 2008. Google Scholar
  4. Elwyn R. Berlekamp. The Dots and Boxes Game: Sophisticated Child’s Play. AK Peters/CRC Press, 2000. Google Scholar
  5. Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Chapter 16: Dots-and-boxes. In Winning Ways for your Mathematical Plays, volume 3, pages 541-584. A K Peters/CRC Press, 2nd edition, 2003. Google Scholar
  6. Hans L. Bodlaender. On disjoint cycles. In Graph-Theoretic Concepts in Computer Science, pages 230-238, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg. Google Scholar
  7. Kevin Buchin, Mart Hagedoorn, Irina Kostitsyna, Max van Mulken, Jolan Rensen, and Leo van Schooten. Dots & polygons, 2020. URL: http://arxiv.org/abs/2004.01235.
  8. Alberto Caprara and Romeo Rizzi. Packing triangles in bounded degree graphs. Information Processing Letters, 84(4):175-180, 2002. Google Scholar
  9. David Eppstein. Computational complexity of games and puzzles. Last accessed on 14/02/2020. URL: https://www.ics.uci.edu/~eppstein/cgt/hard.html.
  10. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA, 1979. Google Scholar
  11. Ronald L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters, 1:132-133, 1972. Google Scholar
  12. Sian Zelbo. Dots and polygons game. Last accessed on 14/02/2020. URL: http://www.1001mathproblems.com/2015/03/for-printable-game-boards-click-here.html.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail