License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.DISC.2020.19
URN: urn:nbn:de:0030-drops-130972
URL: https://drops.dagstuhl.de/opus/volltexte/2020/13097/
Go to the corresponding LIPIcs Volume Portal


Grossman, Ofer ; Khoury, Seri ; Paz, Ami

Improved Hardness of Approximation of Diameter in the CONGEST Model

pdf-format:
LIPIcs-DISC-2020-19.pdf (1 MB)


Abstract

We study the problem of approximating the diameter D of an unweighted and undirected n-node graph in the congest model. Through a connection to extremal combinatorics, we show that a (6/11 + ε)-approximation requires Ω(n^{1/6}/log n) rounds, a (4/7 + ε)-approximation requires Ω(n^{1/4}/log n) rounds, and a (3/5 + ε)-approximation requires Ω(n^{1/3}/log n) rounds. These lower bounds are robust in the sense that they hold even against algorithms that are allowed to return an additional small additive error. Prior to our work, only lower bounds for (2/3 + ε)-approximation were known [Frischknecht et al. SODA 2012, Abboud et al. DISC 2016].
Furthermore, we prove that distinguishing graphs of diameter 3 from graphs of diameter 5 requires Ω(n/log n) rounds. This stands in sharp contrast to previous work: while there is an algorithm that returns an estimate ⌊ 2/3D ⌋ ≤ D̃ ≤ D in Õ(√n+D) rounds [Holzer et al. DISC 2014], our lower bound implies that any algorithm for returning an estimate 2/3D ≤ D̃ ≤ D requires ̃Ω(n) rounds.

BibTeX - Entry

@InProceedings{grossman_et_al:LIPIcs:2020:13097,
  author =	{Ofer Grossman and Seri Khoury and Ami Paz},
  title =	{{Improved Hardness of Approximation of Diameter in the CONGEST Model}},
  booktitle =	{34th International Symposium on Distributed Computing (DISC 2020)},
  pages =	{19:1--19:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-168-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{179},
  editor =	{Hagit Attiya},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/13097},
  URN =		{urn:nbn:de:0030-drops-130972},
  doi =		{10.4230/LIPIcs.DISC.2020.19},
  annote =	{Keywords: Distributed graph algorithms, Approximation algorithms, Lower bounds}
}

Keywords: Distributed graph algorithms, Approximation algorithms, Lower bounds
Collection: 34th International Symposium on Distributed Computing (DISC 2020)
Issue Date: 2020
Date of publication: 07.10.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI