License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.DISC.2020.29
URN: urn:nbn:de:0030-drops-131074
URL: https://drops.dagstuhl.de/opus/volltexte/2020/13107/
Go to the corresponding LIPIcs Volume Portal


Ghinea, Diana ; Hirt, Martin ; Liu-Zhang, Chen-Da

From Partial to Global Asynchronous Reliable Broadcast

pdf-format:
LIPIcs-DISC-2020-29.pdf (0.6 MB)


Abstract

Broadcast is a fundamental primitive in distributed computing. It allows a sender to consistently distribute a message among n recipients. The seminal result of Pease et al. [JACM'80] shows that in a complete network of synchronous bilateral channels, broadcast is achievable if and only if the number of corruptions is bounded by t < n/3. To overcome this bound, a fascinating line of works, Fitzi and Maurer [STOC'00], Considine et al. [JC'05], and Raykov [ICALP'15], proposed strengthening the communication network by assuming partial synchronous broadcast channels, which guarantee consistency among a subset of recipients.
We extend this line of research to the asynchronous setting. We consider reliable broadcast protocols assuming a communication network which provides each subset of b parties with reliable broadcast channels. A natural question is to investigate the trade-off between the size b and the corruption threshold t. We answer this question by showing feasibility and impossibility results:
- A reliable broadcast protocol Π_{RBC} that:
- For 3 ≤ b ≤ 4, is secure up to t < n/2 corruptions.
- For b > 4 even, is secure up to t < ((b-4)/(b-2) n + 8/(b-2)) corruptions.
- For b > 4 odd, is secure up to t < ((b-3)/(b-1) n + 6/(b-1)) corruptions.
- A nonstop reliable broadcast Π_{nRBC}, where parties are guaranteed to obtain output as in reliable broadcast but may need to run forever, secure up to t < (b-1)/(b+1) n corruptions.
- There is no protocol for (nonstop) reliable broadcast secure up to t ≥ (b-1)/(b+1) n corruptions, implying that Π_{RBC} is an asymptotically optimal reliable broadcast protocol, and Π_{nRBC} is an optimal nonstop reliable broadcast protocol.

BibTeX - Entry

@InProceedings{ghinea_et_al:LIPIcs:2020:13107,
  author =	{Diana Ghinea and Martin Hirt and Chen-Da Liu-Zhang},
  title =	{{From Partial to Global Asynchronous Reliable Broadcast}},
  booktitle =	{34th International Symposium on Distributed Computing (DISC 2020)},
  pages =	{29:1--29:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-168-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{179},
  editor =	{Hagit Attiya},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/13107},
  URN =		{urn:nbn:de:0030-drops-131074},
  doi =		{10.4230/LIPIcs.DISC.2020.29},
  annote =	{Keywords: asynchronous broadcast, partial broadcast}
}

Keywords: asynchronous broadcast, partial broadcast
Collection: 34th International Symposium on Distributed Computing (DISC 2020)
Issue Date: 2020
Date of publication: 07.10.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI