LIPIcs.SoCG.2021.9.pdf
- Filesize: 0.93 MB
- 16 pages
A rectilinear Steiner tree for a set P of points in ℝ² is a tree that connects the points in P using horizontal and vertical line segments. The goal of {Minimum Rectilinear Steiner Tree} is to find a rectilinear Steiner tree with minimal total length. We investigate how the complexity of {Minimum Rectilinear Steiner Tree} for point sets P inside the strip (-∞,+∞)× [0,δ] depends on the strip width δ. We obtain two main results. - We present an algorithm with running time n^O(√δ) for sparse point sets, that is, point sets where each 1×δ rectangle inside the strip contains O(1) points. - For random point sets, where the points are chosen randomly inside a rectangle of height δ and expected width n, we present an algorithm that is fixed-parameter tractable with respect to δ and linear in n. It has an expected running time of 2^{O(δ √{δ})} n.
Feedback for Dagstuhl Publishing