Parameterized Complexity of Quantum Knot Invariants

Author Clément Maria



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2021.53.pdf
  • Filesize: 1.68 MB
  • 17 pages

Document Identifiers

Author Details

Clément Maria
  • INRIA Sophia Antipolis-Méditerranée, France

Cite AsGet BibTex

Clément Maria. Parameterized Complexity of Quantum Knot Invariants. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 53:1-53:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.SoCG.2021.53

Abstract

We give a general fixed parameter tractable algorithm to compute quantum invariants of links presented by planar diagrams, whose complexity is singly exponential in the carving-width (or the tree-width) of the diagram. In particular, we get a O(N^{3/2 cw} poly(n)) ∈ N^O(√n) time algorithm to compute any Reshetikhin-Turaev invariant - derived from a simple Lie algebra 𝔤 - of a link presented by a planar diagram with n crossings and carving-width cw, and whose components are coloured with 𝔤-modules of dimension at most N. For example, this includes the N^{th}-coloured Jones polynomial.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
  • Theory of computation → Computational geometry
  • Mathematics of computing → Graphs and surfaces
Keywords
  • computational knot theory
  • parameterized complexity
  • quantum invariants

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Dorit Aharonov, Vaughan Jones, and Zeph Landau. A polynomial quantum algorithm for approximating the jones polynomial. Algorithmica, 55:395-421, 2009. Google Scholar
  2. Daniel Bienstock. On embedding graphs in trees. Journal of Combinatorial Theory, Ser. B, 49(1):103-136, 1990. URL: https://doi.org/10.1016/0095-8956(90)90066-9.
  3. Benjamin A. Burton. The HOMFLY-PT polynomial is fixed-parameter tractable. In 34th International Symposium on Computational Geometry, SoCG 2018, pages 18:1-18:14, 2018. URL: https://doi.org/10.4230/LIPIcs.SoCG.2018.18.
  4. Benjamin A. Burton. The next 350 million knots. In 36th International Symposium on Computational Geometry, SoCG 2020, pages 25:1-25:17, 2020. Google Scholar
  5. Benjamin A. Burton, Clément Maria, and Jonathan Spreer. Algorithms and complexity for Turaev-Viro invariants. Journal of Applied and Computational Topology, 2(1-2):33-53, 2018. URL: https://doi.org/10.1007/s41468-018-0016-2.
  6. Vladimir G. Drinfeld. Quantum groups. In Proceedings International Congress of Mathematicians, pages 798-820, 1986. Google Scholar
  7. Stavros Garoufalidis. On the characteristic and deformation varieties of a knot. Geometry & Topology Monographs, 7:291-309, 2004. Google Scholar
  8. Stavros Garoufalidis. The Jones slopes of a knot. Quantum Topology, 2(1):43-69, 2011. Google Scholar
  9. Leslie Ann Goldberg and Mark Jerrum. Inapproximability of the Tutte polynomial of a planar graph. Computational Complexity, 21:605-642, 2012. Google Scholar
  10. Qian-Ping Gu and Hisao Tamaki. Optimal branch-decomposition of planar graphs in O(n3) time. ACM Transaction on Algorithms, 4(3):30:1-30:13, 2008. Google Scholar
  11. Kristóf Huszár and Jonathan Spreer. 3-manifold triangulations with small treewidth. In 35th International Symposium on Computational Geometry, SoCG 2019, pages 44:1-44:20, 2019. URL: https://doi.org/10.4230/LIPIcs.SoCG.2019.44.
  12. Kristóf Huszár, Jonathan Spreer, and Uli Wagner. On the treewidth of triangulated 3-manifolds. Journal of Computational Geometry, 2(10):70–98, 2019. Google Scholar
  13. François Jaeger, Dirk L. Vertigan, and Dominic J. A. Welsh. On the computational complexity of the Jones and Tutte polynomials. Mathematical Proceedings of the Cambridge Philosophical Society, 108(1):35–53, 1990. Google Scholar
  14. Michio Jimbo. A q-difference analogue of U(g) and the Yang-Baxter equation. Letters in Mathematical Physics, 10(1):63-69, 1985. Google Scholar
  15. Vaughan F. R. Jones. A polynomial invariant for knots via von Neumann algebras. Bulletin of the American Mathematical Society, 12:103-111, 1985. Google Scholar
  16. Rinat M. Kashaev. The hyperbolic volume of knots from the quantum dilogarithm. Letters in Mathematical Physics, 39(3):269-275, 1997. Google Scholar
  17. W. B. Raymond Lickorish. An Introduction to Knot Theory. Graduate Texts in Mathematics. Springer-Verlag New York, 1997. Google Scholar
  18. Richard J. Lipton and Robert E. Tarjan. A separator theorem for planar graphs. SIAM Journal on Applied Mathematics, 36(2):177-189, 1979. Google Scholar
  19. Janos A. Makowsky and Julián P. Mariño. The parameterized complexity of knot polynomials. Journal of Computer and System Sciences, 67(4):742-756, 2003. Google Scholar
  20. Clément Maria and Jessica S. Purcell. Treewidth, crushing, and hyperbolic volume. Algebraic & Geometric Topology, 19:2625-2652, 2019. Google Scholar
  21. Clément Maria and Owen Rouillé. Computation of large r asymptotics of 3-manifold quantum invariants. In Proceedings of the 23rd Meeting on Algorithm Engineering and Experiments, ALENEX 2021. SIAM, 2021. Google Scholar
  22. Clément Maria and Jonathan Spreer. A polynomial-time algorithm to compute Turaev-Viro invariants TV4,q of 3-manifolds with bounded first Betti number. Found. Comput. Math., 20(5):1013-1034, 2020. URL: https://doi.org/10.1007/s10208-019-09438-8.
  23. Clément Maria. Parameterized complexity of quantum knot invariants, 2019. URL: http://arxiv.org/abs/1910.00477.
  24. Hitoshi Murakami and Jun Murakami. The colored Jones polynomials and the simplicial volume of a knot. Acta Mathematica, 186(1):85-104, 2001. Google Scholar
  25. Nicolai Y. Reshetikhin and Vladimir G. Turaev. Ribbon graphs and their invariants derived from quantum groups. Communications in Mathematical Physics, 127(1):1-26, 1990. Google Scholar
  26. Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms, 7(3):309-322, 1986. Google Scholar
  27. Saul Schleimer, Arnaud de Mesmay, Jessica Purcell, and Eric Sedgwick. On the tree-width of knot diagrams. Journal of Computational Geometry, 10(1):164-180, 2019. Google Scholar
  28. Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217-241, 1994. Google Scholar
  29. Vladimir G. Turaev. Quantum Invariants of Knots and 3-Manifolds. de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, revised edition, 2010. Google Scholar
  30. Vladimir G. Turaev and Oleg Y. Viro. State sum invariants of 3-manifolds and quantum 6j-symbols. Topology, 31(4):865-902, 1992. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail