License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2021.92
URN: urn:nbn:de:0030-drops-141616
URL: https://drops.dagstuhl.de/opus/volltexte/2021/14161/
Go to the corresponding LIPIcs Volume Portal


Lampis, Michael

Minimum Stable Cut and Treewidth

pdf-format:
LIPIcs-ICALP-2021-92.pdf (0.8 MB)


Abstract

A stable or locally-optimal cut of a graph is a cut whose weight cannot be increased by changing the side of a single vertex. Equivalently, a cut is stable if all vertices have the (weighted) majority of their neighbors on the other side. Finding a stable cut is a prototypical PLS-complete problem that has been studied in the context of local search and of algorithmic game theory.
In this paper we study Min Stable Cut, the problem of finding a stable cut of minimum weight, which is closely related to the Price of Anarchy of the Max Cut game. Since this problem is NP-hard, we study its complexity on graphs of low treewidth, low degree, or both. We begin by showing that the problem remains weakly NP-hard on severely restricted trees, so bounding treewidth alone cannot make it tractable. We match this hardness with a pseudo-polynomial DP algorithm solving the problem in time (Δ⋅ W)^{O(tw)}n^{O(1)}, where tw is the treewidth, Δ the maximum degree, and W the maximum weight. On the other hand, bounding Δ is also not enough, as the problem is NP-hard for unweighted graphs of bounded degree. We therefore parameterize Min Stable Cut by both tw and Δ and obtain an FPT algorithm running in time 2^{O(Δtw)}(n+log W)^{O(1)}. Our main result for the weighted problem is to provide a reduction showing that both aforementioned algorithms are essentially optimal, even if we replace treewidth by pathwidth: if there exists an algorithm running in (nW)^{o(pw)} or 2^{o(Δpw)}(n+log W)^{O(1)}, then the ETH is false. Complementing this, we show that we can, however, obtain an FPT approximation scheme parameterized by treewidth, if we consider almost-stable solutions, that is, solutions where no single vertex can unilaterally increase the weight of its incident cut edges by more than a factor of (1+ε).
Motivated by these mostly negative results, we consider Unweighted Min Stable Cut. Here our results already imply a much faster exact algorithm running in time Δ^{O(tw)}n^{O(1)}. We show that this is also probably essentially optimal: an algorithm running in n^{o(pw)} would contradict the ETH.

BibTeX - Entry

@InProceedings{lampis:LIPIcs.ICALP.2021.92,
  author =	{Lampis, Michael},
  title =	{{Minimum Stable Cut and Treewidth}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{92:1--92:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14161},
  URN =		{urn:nbn:de:0030-drops-141616},
  doi =		{10.4230/LIPIcs.ICALP.2021.92},
  annote =	{Keywords: Treewidth, Local Max-Cut, Nash Stability}
}

Keywords: Treewidth, Local Max-Cut, Nash Stability
Collection: 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)
Issue Date: 2021
Date of publication: 02.07.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI