Improved Inapproximability of VC Dimension and Littlestone’s Dimension via (Unbalanced) Biclique

Author Pasin Manurangsi



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2023.85.pdf
  • Filesize: 0.72 MB
  • 18 pages

Document Identifiers

Author Details

Pasin Manurangsi
  • Google Research, Bangkok, Thailand

Acknowledgements

I would like to thank ITCS 2023 reviewers for their helpful comments and suggestions.

Cite AsGet BibTex

Pasin Manurangsi. Improved Inapproximability of VC Dimension and Littlestone’s Dimension via (Unbalanced) Biclique. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 85:1-85:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.ITCS.2023.85

Abstract

We study the complexity of computing (and approximating) VC Dimension and Littlestone’s Dimension when we are given the concept class explicitly. We give a simple reduction from Maximum (Unbalanced) Biclique problem to approximating VC Dimension and Littlestone’s Dimension. With this connection, we derive a range of hardness of approximation results and running time lower bounds. For example, under the (randomized) Gap-Exponential Time Hypothesis or the Strongish Planted Clique Hypothesis, we show a tight inapproximability result: both dimensions are hard to approximate to within a factor of o(log n) in polynomial-time. These improve upon constant-factor inapproximability results from [Pasin Manurangsi and Aviad Rubinstein, 2017].

Subject Classification

ACM Subject Classification
  • Theory of computation → Problems, reductions and completeness
Keywords
  • VC Dimension
  • Littlestone’s Dimension
  • Maximum Biclique
  • Hardness of Approximation
  • Fine-Grained Complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Piotr Berman and Georg Schnitger. On the complexity of approximating the independent set problem. In STACS, pages 256-268, 1989. URL: https://doi.org/10.1007/BFb0028990.
  2. Amey Bhangale, Rajiv Gandhi, Mohammad Taghi Hajiaghayi, Rohit Khandekar, and Guy Kortsarz. Bicovering: Covering edges with two small subsets of vertices. In ICALP, pages 6:1-6:12, 2016. URL: https://doi.org/10.4230/LIPIcs.ICALP.2016.6.
  3. Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability and the vapnik-chervonenkis dimension. J. ACM, 36(4):929-965, 1989. URL: https://doi.org/10.1145/76359.76371.
  4. Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi, Danupon Nanongkai, and Luca Trevisan. From gap-exponential time hypothesis to fixed parameter tractable inapproximability: Clique, dominating set, and more. SIAM J. Comput., 49(4):772-810, 2020. URL: https://doi.org/10.1137/18M1166869.
  5. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  6. Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. URL: https://doi.org/10.1145/1236457.1236459.
  7. Irit Dinur. Mildly exponential reduction from gap 3sat to polynomial-gap label-cover. Electron. Colloquium Comput. Complex., page 128, 2016. URL: https://eccc.weizmann.ac.il/report/2016/128, URL: http://arxiv.org/abs/TR16-128.
  8. Rodney G. Downey, Patricia A. Evans, and Michael R. Fellows. Parameterized learning complexity. In COLT, pages 51-57, 1993. URL: https://doi.org/10.1145/168304.168311.
  9. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. URL: https://doi.org/10.1007/978-1-4471-5559-1.
  10. Uriel Feige and Shimon Kogan. Hardness of approximation of the balanced complete bipartite subgraph problem. Technical report, Weizmann Institute of Science, Rehovot, Israel, 2004. Google Scholar
  11. Andreas Emil Feldmann, Karthik C. S., Euiwoong Lee, and Pasin Manurangsi. A survey on approximation in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146, 2020. URL: https://doi.org/10.3390/a13060146.
  12. Moti Frances and Ami Litman. Optimal mistake bound learning is hard. Inf. Comput., 144(1):66-82, 1998. URL: https://doi.org/10.1006/inco.1998.2709.
  13. Oded Goldreich. On promise problems: A survey. In Oded Goldreich, Arnold L. Rosenberg, and Alan L. Selman, editors, Theoretical Computer Science, Essays in Memory of Shimon Even, volume 3895 of Lecture Notes in Computer Science, pages 254-290. Springer, 2006. URL: https://doi.org/10.1007/11685654_12.
  14. Steve Hanneke. The optimal sample complexity of PAC learning. J. Mach. Learn. Res., 17:38:1-38:15, 2016. URL: http://jmlr.org/papers/v17/15-389.html.
  15. Johan Håstad. Clique is hard to approximate within n^1 - ε. In FOCS, pages 627-636, 1996. URL: https://doi.org/10.1109/SFCS.1996.548522.
  16. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367-375, 2001. URL: https://doi.org/10.1006/jcss.2000.1727.
  17. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001. URL: https://doi.org/10.1006/jcss.2001.1774.
  18. Mark Jerrum. Large cliques elude the metropolis process. Random Struct. Algorithms, 3(4):347-360, 1992. URL: https://doi.org/10.1002/rsa.3240030402.
  19. Richard Karp. Probabilistic analysis of some combinatorial search problems. Algorithms and Complexity: New Directions and Recent Results, 1976. Google Scholar
  20. Subhash Khot. Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM J. Comput., 36(4):1025-1071, 2006. URL: https://doi.org/10.1137/S0097539705447037.
  21. Subhash Khot and Ashok Kumar Ponnuswami. Better inapproximability results for maxclique, chromatic number and min-3lin-deletion. In ICALP, pages 226-237, 2006. URL: https://doi.org/10.1007/11786986_21.
  22. Bingkai Lin. The parameterized complexity of k-biclique. In Piotr Indyk, editor, SODA, pages 605-615, 2015. URL: https://doi.org/10.1137/1.9781611973730.41.
  23. Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Mach. Learn., 2(4):285-318, 1987. URL: https://doi.org/10.1007/BF00116827.
  24. Pasin Manurangsi. Almost-polynomial ratio eth-hardness of approximating densest k-subgraph. In STOC, pages 954-961, 2017. URL: https://doi.org/10.1145/3055399.3055412.
  25. Pasin Manurangsi. Inapproximability of maximum edge biclique, maximum balanced biclique and minimum k-cut from the small set expansion hypothesis. In ICALP, pages 79:1-79:14, 2017. URL: https://doi.org/10.4230/LIPIcs.ICALP.2017.79.
  26. Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and complexity of approximating dense csps. In ICALP, pages 78:1-78:15, 2017. URL: https://doi.org/10.4230/LIPIcs.ICALP.2017.78.
  27. Pasin Manurangsi and Aviad Rubinstein. Inapproximability of VC dimension and littlestone’s dimension. In COLT, pages 1432-1460, 2017. URL: http://proceedings.mlr.press/v65/manurangsi17a.html.
  28. Pasin Manurangsi, Aviad Rubinstein, and Tselil Schramm. The strongish planted clique hypothesis and its consequences. In ITCS, pages 10:1-10:21, 2021. URL: https://doi.org/10.4230/LIPIcs.ITCS.2021.10.
  29. Elchanan Mossel and Christopher Umans. On the complexity of approximating the VC dimension. J. Comput. Syst. Sci., 65(4):660-671, 2002. URL: https://doi.org/10.1016/S0022-0000(02)00022-3.
  30. Christos H. Papadimitriou and Mihalis Yannakakis. On limited nondeterminism and the complexity of the V-C dimension. J. Comput. Syst. Sci., 53(2):161-170, 1996. URL: https://doi.org/10.1006/jcss.1996.0058.
  31. Marcus Schaefer. Deciding the Vapnik-Cervonenkis dimension is Σ^p₃-complete. J. Comput. Syst. Sci., 58(1):177-182, 1999. URL: https://doi.org/10.1006/jcss.1998.1602.
  32. Marcus Schaefer. Deciding the k-dimension is pspace-complete. In CCC, pages 198-203, 2000. URL: https://doi.org/10.1109/CCC.2000.856750.
  33. V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability & Its Applications, 16(2):264-280, 1971. URL: https://doi.org/10.1137/1116025.
  34. David Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput., 3(1):103-128, 2007. URL: https://doi.org/10.4086/toc.2007.v003a006.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail