We give a fine-grained classification of evaluating the Tutte polynomial T(G;x,y) on all integer points on graphs with small treewidth and cutwidth. Specifically, we show for any point (x,y) ∈ ℤ² that either - T(G; x, y) can be computed in polynomial time, - T(G; x, y) can be computed in 2^O(tw) n^O(1) time, but not in 2^o(ctw) n^O(1) time assuming the Exponential Time Hypothesis (ETH), - T(G; x, y) can be computed in 2^O(tw log tw) n^O(1) time, but not in 2^o(ctw log ctw) n^O(1) time assuming the ETH, where we assume tree decompositions of treewidth tw and cutwidth decompositions of cutwidth ctw are given as input along with the input graph on n vertices and point (x,y). To obtain these results, we refine the existing reductions that were instrumental for the seminal dichotomy by Jaeger, Welsh and Vertigan [Math. Proc. Cambridge Philos. Soc'90]. One of our technical contributions is a new rank bound of a matrix that indicates whether the union of two forests is a forest itself, which we use to show that the number of forests of a graph can be counted in 2^O(tw) n^O(1) time.
@InProceedings{mannens_et_al:LIPIcs.ESA.2023.82, author = {Mannens, Isja and Nederlof, Jesper}, title = {{A Fine-Grained Classification of the Complexity of Evaluating the Tutte Polynomial on Integer Points Parameterized by Treewidth and Cutwidth}}, booktitle = {31st Annual European Symposium on Algorithms (ESA 2023)}, pages = {82:1--82:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-295-2}, ISSN = {1868-8969}, year = {2023}, volume = {274}, editor = {G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.82}, URN = {urn:nbn:de:0030-drops-187354}, doi = {10.4230/LIPIcs.ESA.2023.82}, annote = {Keywords: Width Parameters, Parameterized Complexity, Tutte Polynomial} }
Feedback for Dagstuhl Publishing