License: Creative Commons Attribution 3.0 Unported license (CC-BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2014.748
URN: urn:nbn:de:0030-drops-47361
URL: https://drops.dagstuhl.de/opus/volltexte/2014/4736/
Go to the corresponding LIPIcs Volume Portal


Guruswami, Venkatesan ; Wang, Carol

Evading Subspaces Over Large Fields and Explicit List-decodable Rank-metric Codes

pdf-format:
53.pdf (0.4 MB)


Abstract

We construct an explicit family of linear rank-metric codes over any field F that enables efficient list decoding up to a fraction rho of errors in the rank metric with a rate of 1-rho-eps, for any desired rho in (0,1) and eps > 0. Previously, a Monte Carlo construction of such codes was known, but this is in fact the first explicit construction of positive rate rank-metric codes for list decoding beyond the unique decoding radius. Our codes are explicit subcodes of the well-known Gabidulin codes, which encode linearized polynomials of low degree via their values at a collection of linearly independent points. The subcode is picked by restricting the message polynomials to an F-subspace that evades certain structured subspaces over an extension field of F. These structured spaces arise from the linear-algebraic list decoder for Gabidulin codes due to Guruswami and Xing (STOC'13). Our construction is obtained by combining subspace designs constructed by Guruswami and Kopparty (FOCS'13) with subspace-evasive varieties due to Dvir and Lovett (STOC'12). We establish a similar result for subspace codes, which are a collection of subspaces, every pair of which have low-dimensional intersection, and which have received much attention recently in the context of network coding. We also give explicit subcodes of folded Reed-Solomon (RS) codes with small folding order that are list-decodable (in the Hamming metric) with optimal redundancy, motivated by the fact that list decoding RS codes reduces to list decoding such folded RS codes. However, as we only list decode a subcode of these codes, the Johnson radius continues to be the best known error fraction for list decoding RS codes.

BibTeX - Entry

@InProceedings{guruswami_et_al:LIPIcs:2014:4736,
  author =	{Venkatesan Guruswami and Carol Wang},
  title =	{{Evading Subspaces Over Large Fields and Explicit List-decodable Rank-metric Codes}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)},
  pages =	{748--761},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-74-3},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{28},
  editor =	{Klaus Jansen and Jos{\'e} D. P. Rolim and Nikhil R. Devanur and Cristopher Moore},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2014/4736},
  URN =		{urn:nbn:de:0030-drops-47361},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2014.748},
  annote =	{Keywords: list-decoding, pseudorandomness, algebraic coding, explicit constructions}
}

Keywords: list-decoding, pseudorandomness, algebraic coding, explicit constructions
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)
Issue Date: 2014
Date of publication: 04.09.2014


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI