DagSemProc.06061.9.pdf
- Filesize: 263 kB
- 27 pages
We assume that the function to be optimized is additively decomposed (ADF). Then the interaction graph $G_{ADF}$ can be used to compute exact or approximate factorizations. For many practical problems only approximate factorizations lead to efficient optimization algorithms. The relation between the approximation used by the FDA algorithm and the minimum relative entropy principle is discussed. A new algorithm is presented, derived from the Bethe-Kikuchi approach in statistical physics. It minimizes the relative entropy to a Boltzmann distribution with fixed $eta$. We shortly compare different factorizations and algorithms within the FDA software. We use 2-d Ising spin glass problems and Kaufman's n-k function as examples.
Feedback for Dagstuhl Publishing