LIPIcs.STACS.2009.1802.pdf
- Filesize: 184 kB
- 12 pages
We study data structures in the presence of adversarial noise. We want to encode a given object in a succinct data structure that enables us to efficiently answer specific queries about the object, even if the data structure has been corrupted by a constant fraction of errors. This new model is the common generalization of (static) data structures and locally decodable error-correcting codes. The main issue is the tradeoff between the space used by the data structure and the time (number of probes) needed to answer a query about the encoded object. We prove a number of upper and lower bounds on various natural error-correcting data structure problems. In particular, we show that the optimal length of error-correcting data structures for the {\sc Membership} problem (where we want to store subsets of size $s$ from a universe of size $n$) is closely related to the optimal length of locally decodable codes for $s$-bit strings.
Feedback for Dagstuhl Publishing